
Civil Servants as Builders: Rethinking Digital Transformation
Beyond Vendors and Centralized Agencies

Prashant Sharma∗
prashant.sharma@berkeley.edu

Independent Researcher
Sacramento, California, USA

Abstract
Government agencies work to serve the public, guided by necessary
safeguards such as detailed procurement processes and strict IT se-
curity standards. These constraints, while essential for safeguarding
public resources and data, can hinder civil servants outside IT teams
from deploying low-cost, lightweight tools. This paper proposes
a limits-aware platform that enables civil servants to develop and
securely share small, domain-specific applications using Jupyter
Notebooks and preapproved open-source libraries. Hosted entirely
within internal government networks and governed through peer
review and sandboxed execution, the system balances innovation
with accountability and information security. Unlike centralized
digital teams or vendor-led approaches, this model empowers public
servants to build and maintain tools directly informed by front-
line realities. By working within existing institutional constraints
rather than bypassing them, the platform supports a sustainable,
bottom-up model of digital transformation aligned with the values
of the Computing within Limits community.

Keywords
Digital Government, Information Systems, Public Administration,
Technology Policy, Digital Transformation, Information Security

1 Introduction
Government agencies operate under important mandates: to safe-
guard public resources, ensure procedural fairness, and uphold
high standards of security. To meet these obligations, digital tools
in the public sector are typically subjected to rigorous procurement
procedures and strict IT oversight. These institutional safeguards
exist for good reason—they are designed to prevent waste, ensure
equitable access to contracting opportunities, and reduce risks to
sensitive data and infrastructure. However, they also have a cost:
civil servants who identify clear opportunities for internal automa-
tion or lightweight tooling often face long procurement cycles or
compete for limited IT bandwidth already stretched thin.

Procurement departments, for instance, are responsible for en-
suring that every expenditure serves the public interest and that

∗The author is a Research Data Specialist at the California Department of Food and
Agriculture (CDFA) at the time of writing. This paper represents independent research
conducted outside the scope of official duties and does not reflect the views, policies,
or endorsements of the State of California or the CDFA. The author’s prior experience
includes work at a startup that collaborated with government agencies in Canada and
the United Arab Emirates. All scenarios and observations presented are hypothetical,
based on general knowledge of public sector processes, and do not reflect internal
practices of any specific department or agency, including those the author has been
affiliated with.

LIMITS ’25,
2025.

projects do not bypasses fair competition. Similarly, IT teams act as
custodians of security and stability, ensuring that all deployed tools
conform to internal standards and do not introduce cybersecurity
vulnerabilities. In environments where time, staffing, and atten-
tion are chronically limited, both functions tend toward caution.
This tendency, while understandable, can unintentionally suppress
creativity, especially when civil servants propose novel solutions
that fall outside conventional procurement or IT service delivery
pipelines.

Today, many civil servants possess technical skills, such as script-
ing in Python or R, querying internal databases, or creating dash-
boards using open source libraries. However, these skills often
remain siloed within individuals or teams. When a civil servant
builds a script that automates a complex task or provides interactive
visualizations, there is often no sanctioned pathway to scale that
solution. Formalizing even a simple application can require navigat-
ing approvals, documentation, security reviews, and infrastructure
constraints that are disproportionate to the complexity of the tool.
As a result, practical innovations built by domain experts often re-
main trapped in local files or are discarded when the staff member
leaves. In addition, some government IT departments may interpret
security controls, such as those outlined in NIST SP 800-53 [8], as
requiring strict oversight of programming environments, resulting
in outright bans on tools like Jupyter Notebook, Python, or R for
non-IT teams.

This paper proposes a speculative but feasible system that en-
ables civil servants to safely build and deploy internal tools within
institutional limits. In doing so, it gestures toward a broader shift in
government digital transformation, moving beyond reliance on ex-
ternal vendors or centralized digital teams. The proposed platform
allows civil servants to create applications in Jupyter Notebooks
and deploy them as secure, interactive web applications accessible
exclusively to authenticated users on the government’s internal
network, whether on-site or connecting remotely through a secure
VPN gateway. Key features include a curated list of preapproved
Python, R, or other relevant language libraries, automated sandbox
execution, lightweight peer review, and internal-only web deploy-
ment. These mechanisms are intended not to replace institutional
oversight, but to make it more scalable, allowing frontline staff to
contribute low-risk digital tools while maintaining accountability
and information security.

Rather than presenting digital transformation as a process that
must be outsourced to vendors or specialized IT teams, this pa-
per argues for a shift in perspective: one in which civil servants
already inside the system are empowered to create sustainable,
domain-specific applications under constrained conditions. This
shift reflects the broader values of the Computing within Limits

https://orcid.org/1234-5678-9012


LIMITS ’25, June 26–27, 2025, Prashant Sharma

community, working within institutional, infrastructural, and eco-
logical boundaries while prioritizing resilience, adaptability, and
the reuse of local knowledge. The sections that follow articulate
the structural barriers to such an approach and how the proposed
system works with, rather than around, those constraints.

1.1 Structural Barriers to Digital Innovation
Despite growing technical fluency among civil servants, systemic
and organizational barriers often prevent frontline innovation from
taking root. These barriers are not primarily technological; they
are deeply embedded in the structures of public administration,
which tend to prioritize procedural integrity, risk minimization,
and stability over agility and experimentation.

Digital transformation in the public sector frequently proceeds
through external procurement. While necessary for ensuring fair-
ness and fiscal accountability, procurement processes are poorly
suited to iterative or exploratory work. Edler et al. [3] note that pro-
curement regimes emphasize compliance and predictability rather
than creativity or impact. This orientation often makes it difficult to
contract for lightweight, open-ended tools or small-scale internal
prototypes. Proposals that do not fit neatly into formal scopes of
work or budget categories may be filtered out early, regardless of
their practical utility.

At the same time, government IT departments face pressures to
maintain operational stability across critical infrastructure. Boze-
man and Kingsley [1] describe how public sector organizations
develop strong cultures of risk aversion—where the political and
reputational consequences of software failure far outweigh the
rewards of incremental success. As a result, even technically fea-
sible proposals involving new platforms, packages, or data access
methods are often denied. This caution systematically excludes
open-source or experimental tools, even when they are popular,
well-documented, and widely used in academia or industry.

Furthermore, digital innovation is not analogous to constructing
a physical asset, such as a bridge or a building, that can be completed
and then handed over for maintenance. Mergel [5] emphasizes
that digital systems require continual refinement, adaptation, and
support. When digital services are delivered entirely through third-
party contracts, agencies often lack the institutional memory or
technical fluency to modify them in response to shifting policy or
operational needs. This dependency leads to brittle systems and
long procurement delays for even minor updates—an unsustainable
model under conditions of resource constraint.

Legacy systems further intensify the challenge. As noted by the
UKHouse of Commons Public Accounts Committee [9, 14], much of
government infrastructure relies on aging software that is difficult
to modernize and expensive to maintain. These systems consume
the bulk of IT budgets, leaving little room for experimentation
or small-scale innovation. Moreover, their rigidity often requires
new tools to conform to outdated standards, thereby limiting what
frontline developers can feasibly build.

These constraints are not temporary; they are structural. Yet as
the Computing within Limits community has emphasized, working
within limits does not mean abandoning innovation—it means redi-
recting it [10, 11]. Digital infrastructure should be made resilient
by embedding it in local practice, enabling small teams to operate

and adapt their own tools without continuous reliance on external
vendors or high-overhead processes. While much of the Computing
within Limits community has focused on ecological and material
resource constraints of future, some scholarship argues that the
scenarios anticipated by limits community are not just future con-
cerns but present realities in many domains. Chen [2] proposes
that limits-aware computing should increasingly engage with real,
immediate problems to make a difference today while preparing
for potential future societal crisis, a perspective complemented by
Tomlinson et al.’s [12] work on collapse informatics. Addressing
structural barriers to small-scale digital innovation in government
embodies many characteristics of a limits context. In fact, solving
today’s deeply embedded limits problems may offer a better founda-
tion for resilience than designing for hypothetical futures—because
the latter are difficult to predict. The system proposed in this paper
thus contributes to the growing body of work [2, 7] that views
collapse not as a singular future event, but as an ongoing condition
that demands adaptive, embedded responses from within existing
structures.

2 System Goals and Assumptions
The proposed system is designed with several key assumptions and
goals:

• No Vendor Lock-In A foundational assumption of the pro-
posed platform is the elimination of vendor lock-in and re-
liance on proprietary low-code environments, which pose
significant risks to government IT sustainability. By exclu-
sively using open-source tools like Jupyter Notebooks and
deploying applications within secure internal networks, the
platform ensures long-term institutional control, modifiabil-
ity, and resilience without dependency on commercial ven-
dors. Unlike proprietary low-code platforms, which often
suffer from opaque licensing, limited long-term support, and
inferior documentation and quality compared to open-source
ecosystems, this approach leverages the robust, community-
driven standards of open-source software.

• Empower Domain Experts: Civil servants possess deep,
situated knowledge of government workflows, policies, and
public needs—insights that external vendors often lack.Many
already write analysis scripts in languages like Python or
R to meet their day-to-day needs, yet systemic barriers pre-
vent this technical ability from being channeled into broader
digital innovation. By enabling civil servants to build and de-
ploy tools themselves, the platform recognizes that domain
expertise is a critical asset, not something to be outsourced.
Unlike traditional vendor-driven development, which often
struggles with costly requirement gathering and miscom-
munication cycles, empowering internal experts allows for
iterative, agile development directly informed by frontline
realities. In the spirit of Computing within Limits, this ap-
proach values local, embedded knowledge over external con-
sultancy models, fostering systems that are better adapted
to the environments in which they must operate.

• Interactive Applications: The platform supports the cre-
ation of rich, interactive web applications that allow users



Civil Servants as Builders: Rethinking Digital Transformation Beyond Vendors and Centralized Agencies LIMITS ’25, June 26–27, 2025,

to input parameters, explore data, visualize results, and ex-
port outputs—all without requiring them to engage with
underlying code. This system makes civil servants’ techni-
cal work accessible to non-programmer colleagues across
departments. By transforming notebooks into interactive
applications, the system bridges the gap between code and
operational tools, allowing for responsive feedback loops
and rapid iteration. In constrained environments where for-
mal IT resources are scarce, such lightweight applications
offer a practical path to increasing internal digital capacity
without the need for heavy, vendor-led IT infrastructure
investments.

• Privacy and Security: All applications created on the plat-
form are securely hosted within the government’s internal
network, ensuring that sensitive data remains protected and
accessible only to authenticated users. To minimize security
risks, developers are restricted to a vetted set of preapproved
libraries, with a streamlined workflow for requesting and
approving new libraries when necessary. This structure ac-
knowledges the legitimate concerns of IT security teams
while still promoting flexibility and innovation. Furthermore,
cross-departmental collaboration on maintaining the shared
library list reduces redundant overhead and accelerates safe
experimentation. For example, multiple departments within
a state government might collaborate to maintain a shared
list of approved libraries. From a LIMITS perspective, this
security model accepts the inevitability of constraints—legal,
ethical, and infrastructural—and designs innovation path-
ways that work within them, rather than ignoring them.

• Lightweight Governance: Rather than imposing heavy
approval processes typical of traditional IT deployments, the
platform emphasizes lightweight, efficient governance mech-
anisms. Each application undergoes a quick but meaningful
peer review, modeled after common software engineering
practices like GitHub pull requests, to catch obvious issues
and ensure basic quality standards. Version control ensures
that any changes are tracked and recoverable, and audit trails
log who uploaded, reviewed, and approved each application,
ensuring accountability without bureaucratic friction. This
approach aligns with LIMITS values by creating governance
structures that are resilient and sustainable under conditions
of limited administrative and technical capacity. It demon-
strates that good governance need not be synonymous with
delay.

• Cultural Transformation: By enabling civil servants to
build, deploy, and maintain their own digital tools, the plat-
form challenges the entrenched notion that public sector in-
novation must always flow through formal IT procurement
or external vendors. It reframes civil servants as capable
technologists who, given the right platforms and safeguards,
can drive meaningful change from within. This reorientation
not only increases organizational agility but also fosters a
culture of continuous learning, creativity, and ownership
among public employees. Consistent with LIMITS think-
ing, the platform recognizes that systemic resilience is best
achieved not by relying on external interventions but by cul-
tivating internal capacities that can adapt and evolve under

constraint. Civil servants are not passive users of technology;
they are, and must be, its stewards.

3 Inspiration
This system is conceptually inspired by existing tools such
as:
– Mercury [6] : an open-source framework for converting
Python Notebooks into shareable web apps without learn-
ing frontend frameworks.

– Voilà [13]: a tool that turns Jupyter notebooks into stan-
dalone web applications.

Unlike these tools, the proposed platform is explicitly de-
signed for a government context and limits: focusing on
internal network-only deployment, preapproved libraries,
sandbox security, audit trails, and peer governance.

4 System Overview
The core philosophy of the system is to work with, rather
than against, the institutional limits present in government
settings—recognizing that procurement rules, IT restrictions,
and limited technical support are enduring realities, not tem-
porary obstacles. The platform’s use of Jupyter Notebooks
reflects this ethos: they are already widely used for inter-
nal data work, are open-source and auditable, and avoid the
risk of vendor lock-in—a critical concern for sustainability
in public institutions. Rather than relying on proprietary
low-code solutions, the platform prioritizes transparency,
modifiability, and long-term institutional control. Its archi-
tecture distributes responsibility through peer review and
versioning, aligning with open-source development norms
and reducing burden on central IT. The system can be built
using open-source technologies, such as Docker and Kuber-
netes, which can be shared as a reusable template across
government agencies.

Figure 1 illustrates the full pipeline from notebook authoring
to live application deployment.

4.1 Authoring the Notebook
Civil servants initiate the process by writing Jupyter Note-
books that encapsulate their data analysis, internal API in-
teractions, visualizations, and workflows. The focus remains
on domain logic and usability rather than web development.
To make notebooks interactive, authors can add lightweight
configuration metadata, such as a YAML header specifying
which variables should be exposed as user inputs (e.g., drop-
down menus, sliders, or file upload fields).
This approach builds on lessons from open-source frame-
works like Mercury [6] and Voilà [13], which demonstrate
that notebooks can serve as viable, low-code front-end in-
terfaces. By lowering the barrier to building interactive ap-
plications, the platform empowers civil servants to convert
internal analyses into reusable tools for broader teams, with-
out needing specialized web development skills.



LIMITS ’25, June 26–27, 2025, Prashant Sharma

Figure 1: System Architecture for Notebook to WebApp

4.2 Upload to Portal
Once the notebook is complete, the civil servant uploads it
to the platform’s secure internal portal. This portal acts as
the primary interface for managing application submissions,
status updates, version history, and peer reviews.
Upon upload, the platform performs an automated validation
process:
– Checks Package Whitelist: Authors must submit a de-
pendency file (e.g., requirements.txt for Python) file
listing all external libraries their notebook depends on.
The platform cross-checks these against a curated registry
of preapproved libraries. If any unapproved packages are
detected, the author is prompted to submit a streamlined
request for IT security review.

– Commits Version Control: Each notebook upload or
revision is committed to an internal Git-based version
control system. This ensures that all changes are tracked,
historical versions are preserved, and any previous version
can be restored if necessary.

By frontloading dependency checks and automating ver-
sion management, the platform reduces the administrative
burden on IT departments while maintaining security and
traceability standards.

4.3 Automated Sandbox Build and Test
After successful upload, the platform automatically spins
up a secure sandbox environment to validate the notebook
execution:
– Execution and Rendering: The notebook runs end-to-
end in a containerized environment to generate outputs
such as plots, tables, and downloadable data files. Raw
code cells are hidden from the final interface, ensuring
users interact only with the intended front-end elements.

– UI Generation: Based on notebook metadata or YAML
configurations, the system dynamically generates user

interface controls. For example, a variable annotated as
a dropdown choice will automatically appear as a selec-
tion menu in the resulting app. This feature transforms
notebooks from static documents into parameter-driven,
interactive applications.

– Sandbox Restrictions: The execution environment strictly
limits external internet access and enforces read-only per-
missions for database credentials. Only connections to
vetted internal APIs are permitted. These security mea-
sures minimize the risk of data leakage or unauthorized
external communication, adhering to public sector IT se-
curity best practices.

If any failures occur, such as missing dependencies, runtime
errors, or unauthorized operations, the platform halts the
process and provides detailed feedback to the author for
revision.

4.4 Peer Review and Approval
Following a successful sandbox build, the system initiates a
lightweight peer review process:
– A designated peer reviewer, typically a colleague within
the same program area, is notified.

– Reviewers are asked to validate basic functionality (e.g.,
does the app run correctly and produce expected outputs?)
rather than performing deep technical security audits.

– Review actions—such as approval, request for changes, or
rejection—are logged in the platform, creating an auditable
trail for internal governance and compliance purposes.

This peer review model draws inspiration from collaborative
software engineering practices, balancing quality assurance
with efficiency. It supports rapid deployment while ensuring
that at least two people assess each tool before it becomes
widely accessible.

4.5 Deployment to Internal Server
Upon approval, the notebook is automatically deployed as
a standalone web application on the government’s internal
servers. Key deployment features include:
– Applications are assigned stable internal URLs (e.g., https:
//apps.department.gov/internal/<app-name>), easily share-
able within teams.

– Access is restricted to authenticated users connected through
the intranet or VPN.

– Each application runs inside its own isolated container,
ensuring that resource consumption, crashes, or security
vulnerabilities in one app do not affect others.

– Applications can be scaled horizontally if usage grows,
allowing for basic load balancing without requiring civil
servants to manage infrastructure directly.

Because the deployed applications are fundamentally Jupyter-
based backends rendered through secure web frontends, they
can evolve easily over time. Civil servants can update their
notebooks, submit new versions through the portal, and roll
out iterative improvements without requiring full redeploy-
ments or external vendor involvement.

https://apps.department.gov/internal/<app-name>
https://apps.department.gov/internal/<app-name>


Civil Servants as Builders: Rethinking Digital Transformation Beyond Vendors and Centralized Agencies LIMITS ’25, June 26–27, 2025,

This deployment strategy minimizes the operational burden
on central IT while enabling frontline teams to maintain,
adapt, and enhance their digital tools autonomously—a criti-
cal capability for sustainability within the practical limits of
government environments.

5 User Scenario Example
To illustrate how the platform might function, consider the
following hypothetical cases:

5.1 Spreadsheets Generator – Binita’s Tool
Binita, a Transportation Engineer at a government depart-
ment, develops a Jupyter Notebook to automate the gener-
ation of Excel spreadsheets. Her tool extracts data from an
internal SQL Server and an ArcGIS geodatabase, processes
it, and outputs multiple structured Excel files. Previously,
preparing these spreadsheets required approximately eight
hours of manual work every week; her script reduces the
task to just a few seconds.
With the proposed platform, Binita uploads her notebook.
She specifies two configurable inputs—month and county
name—using a YAML header. Her notebook relies mostly
on preapproved libraries (pandas, numpy, geopandas) but
also requires spacy, which is not yet on the approved list.
The platform detects the use of an unapproved package and
notifies Binita. Binita submits a package approval request for
spacy through the platform. The IT security team reviews and
approves the spacy library. The platform sandbox executes
her notebook, generates the expected outputs, and configures
UI widgets for the specified parameters. Binita is notified
that the tool has passed automated checks and is ready for
peer review.
During peer review, Yaw accesses the deployed app through
a private preview link. Yaw suggests clarifying the title of
one of the output charts for better interpretability. Binita up-
dates her notebook accordingly, resubmits the new version,
and passes the second review. The platform redeploys the
finalized app and assigns it an internal URL.
Binita shares the link with her team. Team members, includ-
ing those without coding skills, can now instantly generate
customized spreadsheets for different months and counties,
significantly improving efficiency.

5.2 Text Analysis Tool – Sirak’s Tool
Sirak, a Program Data Specialist at the same government
department as Binita but in a different team, develops a
Jupyter Notebook that processes textual data and generates
outputs based on user input. His tool utilizes the pandas and
spacy libraries, both of which are already included in the
agency’s preapproved list. spacy was added after Binita’s
request while she was building Spreadsheet Generator tool,
so it is already available to Sirak.
With the proposed platform, Sirak uploads his notebook. He
specifies one parameter, day, as a configurable input using a
YAML header. His notebook uses only preapproved libraries

(pandas, spacy), so it passes the package validation automati-
cally. The platform sandbox runs his notebook, generates an
interface, and sets up a basic text input field for the parame-
ter. Sirak is notified that the tool has passed initial checks
and is ready for peer review.
During peer review, Marina reviews the deployed app via
a private preview link. Marina suggests that instead of a
free-text input, a dropdown list with days of the week (Mon-
day, Tuesday, etc.) would standardize user input. She also
recommends clarifying the input label to "Day of Week" to
avoid confusion with specific calendar dates. Sirak updates
his notebook’s YAML configuration to replace the text input
with a dropdown list and clarifies the label. He reuploads the
revised notebook, and the platform sandbox re-executes it
successfully. The app passes the second peer review without
further issues. The platform deploys the updated app with
an internal URL.
Sirak shares the link with his colleagues. Staff across the
department can now easily select the day of the week from a
dropdown menu and run the analysis consistently, without
risk of input errors or needing any technical assistance.

The entire process, from code upload to internal deployment,
can be completed in one to three days, rather than requir-
ing months of procurement, contracting, or IT development
time. These scenarios demonstrate how civil servants can
deliver rapid, secure innovation within existing structural
limits, freeing IT departments from routine application re-
quests while maintaining public sector standards of security,
accountability, and fairness.

6 Limitations and Future Work
6.1 Setup Complexity
Setting up such a system may require formal approvals, IT
coordination, and, in some cases, vendor procurement. This
raises a valid concern: does the platform merely shift com-
plexity rather than reduce it? To some extent, yes—the initial
setup is not trivial. However, unlike bespoke tools or one-off
vendor systems, the platform is designed as a reusable tem-
plate. Once piloted in a few government contexts, it gains
institutional legitimacy, enabling other agencies to refer-
ence prior deployments and streamline their own approval
processes. Early adopters thus pave the way for risk-averse
institutions to adopt the platform with greater confidence.
Future work could explore shared deployment kits, inter-
agency collaborations, or public documentation to formalize
this pattern.

6.2 Small Scale Tools
The platform is not intended for large-scale software devel-
opment. It focuses on small, domain-specific tools, such as
data cleaning scripts, report generators, or internal dash-
boards, that many civil servants already create informally or
are capable of building but are restricted by IT security poli-
cies. By lowering barriers for these lightweight applications,
the platform addresses a specific need but does not replace



LIMITS ’25, June 26–27, 2025, Prashant Sharma

the need for enterprise-grade systems or formally procured
software contracts.

6.3 Accessibility for Non-Programmers
In its current form, the platformmay exclude non-programmer
innovators. Many frontline public servants have valuable
ideas for improving workflows but lack coding experience.
While Jupyter Notebooks reduce the barrier compared to
traditional web development, they still require Python or R
fluency. However, this mirrors the status quo rather than
creating new obstacles. The platform may even widen partic-
ipation by fostering collaboration between domain experts
and technically skilled colleagues. Future versions could in-
corporate simplified tool creation, such as visual parameter
configuration, template reuse, or assisted notebook genera-
tion, while avoiding proprietary platforms that risk vendor
lock-in or rely on commercial low-code environments with
uncertain long-term support.

6.4 Library Approval Delays
Although the platform simplifies security governance through
sandboxing and package whitelisting, approving new li-
braries can still cause delays. IT departments, especially in
sensitive policy or regulatory environments, are understand-
ably cautious. No system can ensure complete safety, and
there remains a risk of introducing vulnerabilities through
third-party packages.

6.5 Feasibility for Small Governments
While designed for broad use across agencies, the platform
may be challenging for smaller local governments with lim-
ited IT resources. Maintaining the infrastructure for sand-
boxed execution, peer review governance, and package reg-
istry curation demands sustained organizational capacity.
Collaboration across multiple small governments could help
pool resources, but further research is needed to assess such
models in practice.

7 Discussion
Government digital transformation has followed several
dominant approaches, each shaped by the institutional and
technical constraints of its time. Early systems were often
developed in-house by government IT departments as large,
centralized projects—highly customized but expensive, in-
flexible, and difficult to evolve. Over time, many governments
shifted toward vendor-driven procurement, outsourcing soft-
ware development to external contractors. While this model
promised efficiency and risk reduction, it often introduced
long delays, rigid contracts, and deep dependency on outside
vendors for even minor changes.
To address the limitations of these models, many govern-
ments introduced centralized digital service teams, such as
the UK’s Government Digital Service (GDS), the U.S. Digital
Service (USDS), and similar units elsewhere. [4] These teams
brought technical talent inside the public sector and demon-
strated the value of agile, user-centered design. However,

their capacity is often concentrated on selected high impact
projects, not the small, domain specific tools needed by front
line staff in everyday operations. More recently, low-code
and no-code platforms have been promoted as a way to de-
centralize development, but they often come with risks of
vendor lock-in, limited transparency, and unclear long-term
support.
By contrast, in the private sector, many of these challenges
are less pronounced. Teams across industries often have the
flexibility to adopt freely available tools, low-cost software-
as-a-service (SaaS) products, or internal scripts without the
same legal, procurement, or security hurdles. For example, a
marketing team might install a browser plugin, automate a
spreadsheet, or connect a database to a visualization tool in
just a few hours. In government, those same actions could
require weeks or months of legal review, procurement paper-
work, IT security vetting, or approvals from multiple depart-
ments. This stark difference highlights the need for systems
that are specifically designed to work within public-sector
constraints, rather than assuming the ease and flexibility
that private-sector teams often take for granted.
The system proposed in this paper offers a complementary
model to existing approaches, not a replacement. It does
not reject centralized teams or vendor partnerships. This
model recognizes a gap that neither vendors nor specialized
digital units can bridge: deep, situated knowledge of frontline
workflows and operational nuance. While centralized teams
may have advanced engineering or data science skills, they
often lack the granular, often tacit knowledge possessed by
civil servants working directly on the problem. Empowering
those workers to build tools does not just increase efficiency,
it improves relevance, adaptability, and ownership.
By standardizing a reusable architecture, the platform low-
ers the barrier for risk-averse agencies to adopt it over time.
Early implementations generate institutional precedent, al-
lowing others to follow with less friction.
From a LIMITS perspective, this approach reflects the need
to build within real constraints. The system uses what insti-
tutions already have: public servants with technical skills,
open-source tooling, and secure internal networks. Design-
ing for institutional resilience today, within bureaucratic
and infrastructural limits, may offer a more grounded foun-
dation for navigating future scenarios in other sectors that
presently enjoys more flexibility on using low cost SaaS
tools, open source packages, or internal scripts with min-
imal oversight. As LIMITS scholars have noted [2, 10, 11],
future scenarios shaped by potential ecological instability,
economic degrowth, supply chain fragility, or geopolitical
disruptions could impose new limits similar to those faced by
governmental organizations in other sectors. In that context,
innovating within these constraints now may offer practical
patterns and infrastructure that prove valuable far beyond
their original use case.



Civil Servants as Builders: Rethinking Digital Transformation Beyond Vendors and Centralized Agencies LIMITS ’25, June 26–27, 2025,

8 Conclusion
This paper proposes a speculative but feasible platform that
empowers civil servants to build and deploy internal tools
safely within the structural limits of government work. By
providing a secure, auditable pipeline from notebook to web
application, the system upholds core public sector values
of accountability, security, and fairness, while dramatically
increasing agility at the frontline. Rather than bypassing
procurement or IT processes, the platform complements
and supports them, freeing critical resources for higher-risk
projects and enabling routine innovation to flourish. It repo-
sitions civil servants not just as users of technology, but as
active builders of digital solutions.

References
[1] Barry Bozeman and Gordon Kingsley. 1998. Risk culture in public and

private organizations. Public Administration Review 58, 2 (1998), 109–
118.

[2] Jay Chen. 2016. A strategy for limits-aware computing. In Proceedings of
the Second Workshop on Computing within Limits. Association for Com-
puting Machinery, New York, NY, USA. doi:10.1145/2926676.2926692

[3] Jakob Edler, Luke Georghiou, Elvira Uyarra, and Jillian Yeow. 2015. The
meaning and limitations of public procurement for innovation: a sup-
plier’s experience. In Public Procurement for Innovation, Charles Edquist
et al. (Eds.). Edward Elgar Publishing, 35–64.

[4] Ines Mergel. 2016. Agile innovation management in government: A
research agenda. Government Information Quarterly (2016).

[5] Ines Mergel. 2017. Digital Service Teams: Challenges and Recom-
mendations for Government. Technical Report. IBM Center for The
Business of Government. https://www.businessofgovernment.org/sites/

default/files/Digital%20Service%20Teams%20-%20Challenges%20and%
20Recommendations%20for%20Government.pdf

[6] mljar. 2025. Mercury: Convert Jupyter Notebooks to Web Apps. https:
//github.com/mljar/mercury. Accessed: 2025-04-29.

[7] Bonnie Nardi, Bill Tomlinson, Donald J. Patterson, Jay Chen, Daniel
Pargman, Barath Raghavan, and Birgit Penzenstadler. 2018. Computing
within Limits. Commun. ACM (2018).

[8] National Institute of Standards and Technology. 2020. Security and
Privacy Controls for Information Systems and Organizations. Technical
Report NIST SP 800-53 Rev. 5. U.S. Department of Commerce. https:
//doi.org/10.6028/NIST.SP.800-53r5

[9] Committee of Public Accounts. 2025. Use of AI in Government. Eigh-
teenth Report of Session 2024–25 HC 356. House of Commons, London,
UK. https://committees.parliament.uk/publications/47199/documents/
244683/default/

[10] Birgit Penzenstadler, Ankita Raturi, Debra J. Richardson, M. Six Silber-
man, and Bill Tomlinson. 2015. Collapse (and Other Futures) Software
Engineering. First Monday (2015).

[11] Bill Tomlinson and Benoit A. Aubert. 2017. Information Systems in a
Future of Decreased and Redistributed Global Growth. In Proceedings of
the 2017 Workshop on Computing Within Limits (LIMITS ’17). Association
for Computing Machinery, New York, NY, USA. doi:10.1145/3080556.
3080561

[12] Bill Tomlinson, M. Six Silberman, Donald J. Patterson, Yue Pan, and
Eli Blevis. 2012. Collapse informatics: Augmenting the sustainability
and ICT4D discourse in HCI. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’12). ACM. doi:10.1145/
2207676.2207770

[13] voila dashboards. 2025. Voilà: turn Jupyter notebooks into standalone
web applications. https://github.com/voila-dashboards/voila. Accessed:
2025-04-29.

[14] Peter Walker. 2025. Government AI roll-outs threatened
by outdated IT systems. The Guardian (2025). https:
//www.theguardian.com/technology/2025/mar/26/government-
ai-roll-outs-threatened-by-outdated-it-systems Accessed: 2025-06-23.

https://doi.org/10.1145/2926676.2926692
https://www.businessofgovernment.org/sites/default/files/Digital%20Service%20Teams%20-%20Challenges%20and%20Recommendations%20for%20Government.pdf
https://www.businessofgovernment.org/sites/default/files/Digital%20Service%20Teams%20-%20Challenges%20and%20Recommendations%20for%20Government.pdf
https://www.businessofgovernment.org/sites/default/files/Digital%20Service%20Teams%20-%20Challenges%20and%20Recommendations%20for%20Government.pdf
https://github.com/mljar/mercury
https://github.com/mljar/mercury
https://doi.org/10.6028/NIST.SP.800-53r5
https://doi.org/10.6028/NIST.SP.800-53r5
https://committees.parliament.uk/publications/47199/documents/244683/default/
https://committees.parliament.uk/publications/47199/documents/244683/default/
https://doi.org/10.1145/3080556.3080561
https://doi.org/10.1145/3080556.3080561
https://doi.org/10.1145/2207676.2207770
https://doi.org/10.1145/2207676.2207770
https://github.com/voila-dashboards/voila
https://www.theguardian.com/technology/2025/mar/26/government-ai-roll-outs-threatened-by-outdated-it-systems
https://www.theguardian.com/technology/2025/mar/26/government-ai-roll-outs-threatened-by-outdated-it-systems
https://www.theguardian.com/technology/2025/mar/26/government-ai-roll-outs-threatened-by-outdated-it-systems

	Abstract
	1 Introduction
	1.1 Structural Barriers to Digital Innovation

	2 System Goals and Assumptions
	3 Inspiration
	4 System Overview
	4.1 Authoring the Notebook
	4.2 Upload to Portal
	4.3 Automated Sandbox Build and Test
	4.4 Peer Review and Approval
	4.5 Deployment to Internal Server

	5 User Scenario Example
	5.1 Spreadsheets Generator – Binita’s Tool
	5.2 Text Analysis Tool – Sirak’s Tool

	6 Limitations and Future Work
	6.1 Setup Complexity
	6.2 Small Scale Tools
	6.3 Accessibility for Non-Programmers
	6.4 Library Approval Delays
	6.5 Feasibility for Small Governments

	7 Discussion
	8 Conclusion
	References

