
The Case for Time-Shared Computing Resources
Pierre Jacquet

École de Technologie Supérieure, Université du Québec
Montréal, Canada

pierre.jacquet@etsmtl.ca

Adrien Luxey-Bitri
Université de Lille, Inria, CNRS, UMR 9189 CRIStAL

Villeneuve d’Ascq, France
Deuxfleurs Association

France
adrien.luxey@inria.fr

Abstract
The environmental impact of Information and Communication Tech-
nologies (ICT) continues to grow, driven notably by increasing usage,
rebound effects, and emerging demands. However, despite the vir-
tual nature of its services, the sector remains inherently constrained
by its materiality and cannot rely on an infinite pool of resources.
As a result, the wide variety of supported services may need to be
managed under stricter limits within hosting facilities in the future.

Contrary to common assumptions, we show that tenants typ-
ically do not share computing resources—even in environments
commonly perceived as mutualized, such as cloud platforms. Time-
sharing has been progressively phased out for reasons of perfor-
mance, security, predictability, and, perhaps more importantly, due
to the decreasing cost of computing resources.

This paper advocates for managing fewer physical resources
by improving resource sharing between tenants. It represents a
paradigm shift, moving beyond traditional time-sharing at the hard-
ware level to a higher abstraction. This approach entails "doing
with fewer resources" under conditions of "reduced performance".
Nonetheless, enhancing the mutualization of infrastructure can
reduce cluster sizes (through consolidation) and improve energy ef-
ficiency, with gains related to the accepted performance trade-off, a
situation potentially more socially acceptable than eliminating ser-
vices. We review the current state of the art, identify challenges and
opportunities, propose interpretations of Time-Shared Computing,
and outline key research directions.

Keywords
Digital commons, Hosting facilities, Shared computing

ACM Reference Format:
Pierre Jacquet and Adrien Luxey-Bitri. 2025. The Case for Time-Shared
Computing Resources. In Proceedings of 11th Workshop on Computing within
Limits (LIMITS ’25). ACM, New York, NY, USA, 8 pages.

1 Introduction
Different paradigm shifts have occurred throughout the history
of Information and Communication Technologies (ICT), driven by
technological innovation and changes in resource costs. Distributed
systems progressively replaced initial centralized and constrained
architectures to improve scalability and fault tolerance. As a result,
computing resources became increasingly dedicated to specific
applications, moving away from earlier, more constrained settings
where resource sharing was a necessity. The authors of this paper

LIMITS ’25, Online
2025.

argue that today’s architectures may once again encounter physical
limits, as ICT faces growing constraints on resources.

Different types of constraints can be identified, the most visible
being the electricity availability, identified by the pressure that ICT
places on existing power grids. Since 2017, electricity consump-
tion from data centres has increased by approximately 12% per
year—more than four times faster than the overall global electric-
ity demand [22]. Such an exponential trajectory raises concerns
about the ability of existing infrastructures to keep pace with the
expansion of digital services.

Another physical constraint stems from the availability of critical
minerals, which are essential to the production and operation of
ICT infrastructures [7, 9]. The competition for these resources
is increasingly intense as they are also crucial to other strategic
sectors.

From a climate perspective, ICT was responsible for approxi-
mately 2 to 3% of global greenhouse gas emissions [17]—a figure
that may increase due to the growing demand for data, cloud ser-
vices, and digital infrastructure. Additional constraints may arise
from carbon policies aimed at curbing this trend.

In response to these limitations, fewer hardware resources may
be available in the future. Rather than simply enduring these limits,
they should be anticipated and actively managed. Yet, the future
in which digital infrastructures must operate under real, material
limits will differ significantly from the early mainframe era, not
only due to the knowledge accumulated and the greater capabilities
of modern infrastructure, but also because of our society’s deep
reliance on these digital systems [8].

Part of the solution may lie in more efficient sharing of existing
physical resources, that is, by using systems capable of supporting
multiple tenants on the same computing resources (i.e., sharing
their available time between applications). While pooling end-user
terminals presents practical challenges, and networks are already
de facto shared, we argue that the most promising opportunities
reside in the mutualization of server-side resources.

In hosting facilities, sharing is mostly limited to spatial partition-
ing (computing resources are virtually divided into smaller subsets
through virtualization), while time-sharing is often overlooked.
Although it is typically addressed as a system-level problem (e.g.,
how processes are scheduled on physical components), we argue
that it should also be considered from a higher perspective: How
can tenant applications consume the minimal amount of resources,
notably by sharing them with others? Since ICT has never had
to operate with fewer transistors [35], this paper explores what
Time-Shared Computing could be under such limits.

https://orcid.org/0009-0002-7988-8550
https://orcid.org/0000-0003-1777-307X


LIMITS ’25, June 26–27, 2025, Online Jacquet et al.

We first review the current state of hosting mutualization in
Section 2. In Section 3, we outline the core principles of Time-
Shared Computing. We then identify key challenges the community
must address across different scenarios, before concluding the paper
in Section 5.

2 State of the Art
In this section, we briefly review how resource sharing has histori-
cally been implemented in computing infrastructures and how it is
currently approached in modern environments.

2.1 From constrained environments...
The concept of Time-Shared Computing is almost as old as software
itself. The transition to programmable systems allowed a single
physical machine to be used for different purposes without modify-
ing its hardware architecture.

One of the earliest examples of shared computing can be found
in mainframes. Due to their high cost and centralized nature, main-
frames were shared within large organizations, implementing what
is arguably the earliest form of sharing: sequential batch processing,
where jobs were executed one after another (e.g., processing punch
cards in sequence). This may be seen as a first naive time-shared
principle.

In the 1960s, job switching was introduced to improve efficiency,
particularly by utilizing idle CPU cycles while waiting for slow I/O
operations [4].

This led to the development of modern time-sharingmechanisms,
where jobs are regularly switched to create the illusion of concur-
rency. This was a revolutionary step, as it enabled multiple users
to interact with a single machine simultaneously. Time-sharing
techniques eventually evolved into virtualization, a concept that
allowed a single physical machine to host multiple virtual ones,
improving isolation between users and optimizing hardware uti-
lization [21, 32].

The introduction of multi-core Central Processing Unit (CPU)
architectures marked another milestone (such as with IBM Sys-
tem/360 Model 65MP in 1965), as it enabled different jobs to run
concurrently on separate computing resources.

A natural evolution from this was the emergence of distributed
architectures, where multiple interconnected servers worked to-
gether (e.g., gossip protocol [14]). This shift was enabled by advance-
ments in networking and the decreasing cost of ICT equipment [40].

Initially, distributed computing followed a client-server model,
where dedicated servers handled specific tasks. This approach
moved away from traditional multi-tenant resource sharing (where
different users shared the same system) toward a single-tenant per-
spective, where resources were shared among processes belonging
to the same organization.

In parallel, research on cluster computing and grid comput-
ing explored how groups of machines could collaborate to solve
large-scale problems. These paradigms primarily targeted High-
Performance Computing (HPC) applications rather than general-
purpose computing.

For many years, large enterprises operated their physical servers
(sometimes rented) but the rising complexity of infrastructure man-
agement led to the adoption of virtualized and shared hosting envi-
ronments, giving birth to cloud computing.

2.2 ...To modern ICT
Cloud computing introduced large-scale mutualization, where Data
Centers (DCs) resources are shared by multiple tenants. Unlike
colocated DCs, which just shares infrastructure elements such as
the building, the cooling, and power supply between bare-metal
servers, cloud computing also shares servers (and part of their
resources) between clients. Virtualization allowed multiple users to
share the same physical servers, improving efficiency and flexibility.

However, cloud computing did not fully restore the practice of
sharing computing resources. Today, virtual CPU s (vCPUs) are
typically provisioned in a 1:1 mapping with physical CPU cores in
cloud platforms [2, 19], limiting platform usage [13].

While oversubscription is documented in DC production environ-
ments [3], even from actors present in cloud infrastructures [5, 39],
it is not common for workloads other than internal. Different rea-
sons may be identified, notably performance predictability, Service-
Level Agreements (SLAs), security, and reputation. On the security
front, co-locating tenants on shared physical resources increases
the risk of side-channel attacks, particularly those exploiting CPU
cache mechanisms [31].

As a result, spatial-sharing is the norm, as a server is divided
through virtual instances. But time-sharing is the exception con-
fined to low-cost cloud offerings [1, 33, 34]. We argue that only time-
sharing can truly mutualize all resources, as spatial sharing only
shares non-reserved resources: multiple Virtual Machines (VMs)
may share the same motherboard but will use different computing
cores, memory pages, and disk blocks.

In summary, the practice of time-sharing computing resources
across different jobs has vastly diminished since the rise of dis-
tributed architectures. Today, it is primarily left to the kernel to
decide howprocesses are allocated to cores rather than being treated
as a multi-tenant problem at a higher level.

This paper advocates for a shift in perspective: computing re-
sources should not only be shared for cost efficiency but also as
a deliberate strategy to reduce the environmental impact of IT
infrastructure.

3 Principle
As discussed earlier, Time-Shared Computing is a fundamental con-
cept in software, traditionally managed by the operating system,
which schedules processes on available computing resources. How-
ever, resource sharing is not a primary design objective for most
developers outside of kernel and systems programming.

This paper advocates for Time-Shared Computing to become a
core objective of modern applications hosting. There are several
compelling reasons to adopt this perspective:

• Reducing infrastructure expansion: Sharing computing
resources minimizes material needs.

• Improving energy efficiency: Maximizing the utilization
of existing platforms leads to higher energy efficiency [23],



The Case for Time-Shared Computing Resources LIMITS ’25, June 26–27, 2025, Online

Table 1: Classification of Time-Shared Policies for Applications

Type Service Inconvenience
Sequential Time-Sharing Virtual resource Delay deployment or vertical elasticity
Concurrent Time-Sharing Virtual resource Potential performance reduction
Sequential Time-Sharing Functional unit Delay execution
Concurrent Time-Sharing Functional unit Potential performance reduction

as underutilized resources still consume power even when
idle.

• Enhancing expertise mutualization: A shared platform
enables optimization of a small set of resources, which may
be easier to manage than more decentralized patterns.

We now explore how Time-Shared Computing can be defined.

3.1 Time-Sharing units
We consider computing resources (CPU, memory, accelerators...) as
the fundamental units that should be considered for time-sharing.

Taking the server, as a coarser-grained unit, as the perimeter for
analysis may offer a more optimistic view. Indeed, many servers are
shared, either sequentially in HPC DCs or concurrently through
spatial sharing in cloud environments, as previously discussed.

However, this perspective introduces a bias, as it overlooks the
continual increase in server capacity: the number of transistors per
microprocessor has not declined in over 50 years [35].

From our standpoint, a cluster of servers cannot be considered
smaller simply because the number of servers has decreased. In-
stead, attention should be given to the overall computing capacity,
which may have increased if the cluster uses more powerful compo-
nents. Focusing on computing resources rather than servers avoids
naive strategies that suggest renewing hardware solely to benefit
from growing computational capabilities.

We argue that attention should be given to the envelope allo-
cated to tenants to support their applications. Envelopes serve as
the interface between software requirements and hardware capac-
ity, and thus, they link application functionalities to their physical
impact. Reducing the per-envelope resource allocation may be the
only sharing principle that meaningfully contributes to lowering
the total computing capacity.

When reasoning in terms of baselines, vCPUs serve as a useful
reference point. They represent a virtual abstraction of physical
cores, whose characteristics have remained relatively stable due
to a plateau in single-thread performance and clock frequency.
Recent increases in transistor counts are now mainly due to the
proliferation of physical and logical cores rather than improvements
in individual core performance [35].

3.2 Time-Sharing policies
Time-sharing distributes the usage of a given resource over time
across multiple applications—a situation we consider more benefi-
cial than assigning dedicated resources per application. However,
time-sharing can be interpreted in various ways. In this subsection,
we explore several of these interpretations.

Table 1 presents a classification of different high-level policies.
We distinguish between two levels of services: virtual resources,

where the client manages their own software within a virtualized
environment; and functional units (a term borrowed from life cycle
analysis [37]), where the hosting provider manages the software
to fulfill a specific service need. In both cases, time-sharing can be
sequential or concurrent, leading to different inconveniences.

In the case of sequential time-sharing at the virtual resource
granularity, the envelope is not immediately started or scaled, but
instead queued until sufficient resources become available. This can
delay deployment or restrict vertical elasticity. Concurrent time-
sharing at the virtual resource level allowsmultiple envelopes to run
simultaneously on shared physical resources, with the hypervisor’s
scheduler multiplexing execution. While this improves utilization,
it may also introduce performance contention.

When time-sharing is applied at the functional unit granularity,
the provider directly manages software components or services.
Sequential time-sharing means that requests or tasks are processed
one at a time using a limited resource pool, potentially introducing
execution delays. Concurrent time-sharing at this level involves
serving multiple tasks in parallel within the same application en-
vironment—common in multi-user SaaS platforms—but this can
also degrade performance due to contention over internal shared
resources, including hardware components (e.g., CPU, memory)
and shared software services (e.g., application threads, databases,
or middleware).

Note that this classification focuses more on the hosting point
of view (macro perspective). Unlike micro-level strategies, which
require the coordination and participation of all actors, macro-level
approaches can be managed by a single entity that centralizes the
necessary expertise.

3.3 Time-Sharing resources
All resource usage can be optimized. An algorithm can improve its
CPU efficiency by reducing complexity, limit memory consumption
through better data structures, or eliminate bottlenecks to accel-
erate the use of GPU resources. Trade-offs often emerge in the
process—an increase in the use of one resource may lead to a reduc-
tion in another (e.g., memory vs. CPU in cache-based architectures).
However, this paper focuses on what comes after optimization.

After optimizations, the next step is sharing—pushing resource
utilization below the granularity achieved by a single optimized
application (e.g., CPU time slices, memory pages, CUDA cores). As
previously discussed, this sharing can occur either sequentially (by
accepting execution delays) or concurrently (by accepting perfor-
mance degradation).

The CPU core is the most straightforward resource to share, as
the kernel already distributes its time efficiently between appli-
cations (using, for example, Completely Fair Scheduler (CFS) [42]
or Earliest Eligible Virtual Deadline First (EEVDF) [38] on Linux).



LIMITS ’25, June 26–27, 2025, Online Jacquet et al.

Table 2: Examples of Time-Shared Policy Applications for Different Services

Service Description Applicable Sharing Paradigm(s)
Personal website (e.g., portfolio, blog) Sequential time-sharing at the functional unit level; low-priority queue with long cache

lifetimes.
Small webshop (few daily transactions) Concurrent time-sharing at the virtual resource or functional unit level.
Large-scale webshop Requires more static spatial allocation; hybrid time-sharing with partial resource dedi-

cation.
Drive service (e.g., file syncing) Concurrent time-sharing at the functional unit level with controlled replication and

compression.
Governmental e-service portal Separation of static and dynamic content: static content served via shared virtual

resources; dynamic content using hybrid strategies.
Streaming service (audio/video) Typically requires dedicated bandwidth and latency guarantees; less critical resources

(e.g., disk) may be shared; background tasks (e.g., encoding) can be time-shared.

Improving sharing at this level is more of an orchestration problem:
how many more jobs can or should be deployed?

Memory sharing is more delicate. Software reserves memory
pages, and the total reserved by software corresponds to its Resident
Set Size (RSS). However, not all reserved pages are actively used;
the actively accessed subset is referred to as theWorking Set Size
(WSS). While RSS may allow for page deduplication and sharing
(e.g., through kernel same-page merging [28]), sharing the WSS is
more complex. Memory constraints can be introduced via sequen-
tial sharing strategies (e.g., hot-plug [30]), or through techniques
such as deallocation (e.g., ballooning [11]), memory compression
(with associated performance degradation [29]), or swapping (also
incurring performance penalties).

Graphics Processing Units (GPUs) can be shared relatively easily
through time-slicing of their compute capacity. Recent develop-
ments in GPU partitioning (e.g., NVIDIA vGPU, NVIDIA MIG)
and cooperative applications (NVIDIA MPS) support concurrent
sharing.

Network resources can be shared at both hardware and protocol
levels. Technologies such as SR-IOV (Single Root I/O Virtualiza-
tion) and software-defined networking (SDN) allow for bandwidth
partitioning, traffic shaping, and QoS enforcement between ten-
ants. Sequential sharing can also be considered, for example, by
scheduling large data transfers during off-peak hours. However,
maintaining low latency and throughput guarantees across tenants
remains a challenging orchestration problem.

Disk storage is less amenable to time-sharing since its primary
role is persistent data retention. The discussion is often more rele-
vant at the infrastructure level, where the trade-offs between SSDs,
HDDs, and tape storage are involved. These technologies differ not
only in read/write performance but also in their environmental
impact [36], underlying that different access frequencies should
lead to different solutions.

FPGAs are inherently suited to sequential sharing as they can
be considered as a physically programmable system.

3.4 Choosing service envelopes
The previously described time-shared hosting envelopes, managed
by hosting providers, present different trade-offs in terms of respon-
siveness, resource availability, and operational complexity. We now
provide insights into how these envelopes can be matched with

various types of digital services, helping developers assess their
suitability in practical scenarios.

Specifically, Table 2 outlines examples of services and potential
sharing paradigms. These paradigms refer to how time-sharing
is applied (e.g., sequential or concurrent), and at what level (e.g.,
virtual resource or functional unit), depending on the needs and
constraints of each service.

This mapping is indicative rather than prescriptive. In practice,
more ambitious implementations are possible, such as separating
static and dynamic components of services to apply distinct sharing
strategies, or designing non-holistic envelopes that allow different
resources to be shared according to different policies, depending
on workload characteristics.

3.5 On other impacts
Most demands in ICT have a tangible impact in terms of resource
consumption, even those not directly tied to the hosting envelope.
For instance, the expectation of fast VM provisioning requires main-
taining a pool of idle server resources to absorb demand variabil-
ity [24]. Another example is elasticity: while scaling an application
up or down improves performance responsiveness, it typically re-
quires over-provisioning when reduced delay is expected, which
again increases resource consumption even when idle, something
that may be overlooked in geo-scheduling strategies [6]. Finally,
redundancy increases the overall hardware footprint and energy us-
age, and is required when pursuing high availability, robustness or
resiliency, even outside the ICT realm [20]. All those impacts should
not be forgotten while trying to reduce the computing capacity.

4 Potential implementations
In this section, we explore how Time-Shared Computing could be
implemented by hosting providers. In practice, digital services are
operated by a wide variety of actors, from large cloud hyperscalers
to small web-hosting associations. To reflect this diversity, we con-
sider both industrial-scale and community-driven infrastructures,
highlighting the range of possible implementations and trade-offs.



The Case for Time-Shared Computing Resources LIMITS ’25, June 26–27, 2025, Online

0 1 2 3 4 5 6 7
Days

0

20

40

60

80

100

Ho
st

 C
PU

 U
sa

ge
 (%

)

 Spatial-Shared Hosts (Public Cloud)
Values range

mean
1 standard deviation
2 standard deviations
3 standard deviations

0 1 2 3 4 5 6 7
Days

Time-Shared Hosts (Virtual Private Server)

Figure 1: Comparison between different cloud products’ usage of host CPU resources in OVHcloud context through a typical
week

4.1 A cloud provider perspective
We partnered with OVHcloud, one of the largest European cloud
providers, operating more than 43 data centers worldwide, to ex-
plore time-sharing opportunities in their context.

Our study focuses on first analyzing the impact of resource
sharing across different cloud products, selecting two offerings that
implement distinct sharing paradigms.

We then explored how the utilization of physical resources could
be enhanced within the framework of existing cloud models.

4.1.1 Current situation. As previously mentioned, OVHcloud of-
fers a variety of cloud products, ranging from cost-effective in-
stances—referred to as Virtual Private Servers (VPSs) in their port-
folio—to more premium offerings, known as Public Cloud Infras-
tructure (PCI). We propose analyzing the resource usage patterns
of both product lines. We use the CPU as a proxy for cloud server
activity. Among the various resources (memory, disk, network), we
consider the CPU to be the most representative, as most types of
workloads ultimately rely on CPU usage.

Figure 1 presents a unique overview of two distinct clusters: one
composed of VPSs, the other of PCIs, each consisting of over 1,000
servers. We report the CPU usage of hosts over a week in March
2025 using the mean, along with one, two, and three standard devi-
ations from the mean, capturing approximately 68%, 95%, and 99.7%
of the values, respectively, reflecting the Gaussian-like distribution.

A diurnal pattern is evident, particularly within the standard
deviation bands, showing that resource usage rises during the day
and decreases at night. However, the overall variation is relatively
modest, suggesting that much of the computing capacity is not
utilized for human interactions (e.g., websites). As a result, reduced
performance would likely have a low impact on user experience.
Moreover, a significant portion of the resources remains underuti-
lized throughout the week in both scenarios.

The two clusters exhibit distinct behaviors, which reflect their
underlying resource-sharing paradigms. Typically, the cluster opti-
mized for time-sharing allows for increased concurrency of jobs,
leading to improved resource usage, with a clear distinction when

compared to the PCI usage patterns. To the best of our knowl-
edge, this paper is the first to illustrate the scale of resource usage
improvements enabled by time-sharing in an Infrastructure-as-a-
Service (IaaS) context, made possible by OVHcloud’s dual product
lines. When reasoning around the mean, VPSs enables the use of
3.0 times more physical computing resources per host, drastically
reducing the per-instance physical allocation. Note that this ratio
differs from the applied oversubscription ratio, due to factors such
as non-allocated resources, hardware performance, scheduling poli-
cies, VM size distribution, background services running on the host,
and other operational considerations (e.g., maintenance activities).

4.1.2 Leads. From our observations on CPU usage, time-sharing
appears to be a promising strategy to pool the unused margin be-
tween VMs—that is, the gap between the resources provisioned
and those used at a given time. However, current solutions can
be further improved. We identify several avenues to enhance re-
source sharing in cloud environments, building on the taxonomy
presented earlier. The scope of these actions depends on the product
range, which entails varying degrees of provider involvement. We
therefore explore opportunities ranging from virtualized resources
(in an IaaS-like context, where clients manage the software stack
of their VMs) to higher-level functional units (where most of the
resource management is delegated to the cloud provider).

In the context of virtualized resources, sequential time-sharing
policies have notably been investigated through the concept of
Harvesting VMs [41]. These VMs start with minimal guaranteed
resources (e.g., a single core) and can opportunistically acquire
more if available on the host (in terms of both CPU and memory).
While this approach remains opportunistic, offering resources only
when idle, it introduces a hybrid model: some resources are guar-
anteed, while others are elastic and shared. This sequential sharing
model can thus serve to absorb demand peaks. It also links to the
idea of dynamic elasticity—whether through vertical or horizontal
scaling—but with a twist: in a constrained setting, resources might
not be available when requested, a paradigm less explored.



LIMITS ’25, June 26–27, 2025, Online Jacquet et al.

Concurrent time-sharing policies of virtual resources have
been approached from multiple angles. Several works focus on
estimating the optimal oversubscription level—i.e., how many vC-
PUs can reasonably share a single physical core—using runtime
monitoring [5, 13, 25]. Hybrid models have also been proposed,
where only a subset of a VM’s vCPUs participate in concurrent
sharing [27]. The benefit of co-hosting VMs with different levels of
resource sharing has also been highlighted as a means to reduce
resource fragmentation [26].

Virtual resources are managed in a black-box perspective by
the provider. In such a setting, performance degradation caused
by advanced sharing techniques has been studied, both in terms of
identifying optimal sharing levels and developing hybrid strategies.
We believe these hybrid approaches can be extended further for
virtual resources:

• Enhanced Inference: Improved inference of internal work-
loads—either through more intelligent observation or in-
creased communication between the hypervisor and the
VM—could enable dynamic adjustments of the sharing level
as workloads evolve.

• Modular Resource Management: Beyond CPU and mem-
ory, other resources could benefit from time-sliced manage-
ment. Identifying how best to expose such modular, time-
shared resources in an IaaS setting remains an open question.
Current credit-basedmarket models (where VMs earn credits
by not using resources and spend them during bursts [1, 33])
could be revisited in this light.

• Improved security:Although side-channel attacks are tech-
nically complex, they remain a relevant concern in multi-
tenant environments with increasing resource sharing. Po-
tential mitigation strategies include aware scheduling, attack
detection mechanisms, use of physical enclaves, and other
methods.

• Footprint Feedback to Users: The success of any advanced
sharing model relies not only on system efficiency but also
on user perception. Communicating resource savings and
their environmental benefits could incentivize users to adopt
more frugal, sustainable configurations.

Note that all these leads can initially be applied to non-critical
systems (such as microservices that are not a bottleneck), where
the impact of resource sharing is minimal. In contrast, applying the
same strategies to critical or complete systems introduces trade-offs,
with the impact depending on how much sharing is enforced and
how performance degrades.

Functional units, however, present a different perspective. In
these models, the client consumes a service, delegating most of
the technical management to the provider. A prominent exam-
ple is Database as a Service (DBaaS), where users access database
functionalities while the underlying Database Management Sys-
tem (DBSM), storage, and compute resources are fully managed
by the cloud operator. This abstraction enables a more accurate
understanding of the functional need, opening the door to more
fine-grained and efficient optimizations.

A sequential time-sharing policy with this service aligns with
the Function as a Service (FaaS) paradigm, where functions are

queued and executed in response to specific triggers, drawing from
a shared resource pool. While cloud providers typically seek to
minimize start-up latency, it is conceivable to intentionally limit the
resource pool, thus accepting longer wait times based on priorities,
market-based rules, or other fairness strategies.

Concurrent time-sharing policies of functional units would
involve serving multiple tenants from the same software stack
(e.g., multi-tenant databases), potentially in oversubscribed settings.
These optimizations are inherently product-specific but aim at the
same goal: minimizing physical resource usage by pooling static
overhead (e.g., base memory footprint, redundant system processes)
across clients. As with virtualized resources, a progression can be
envisioned: starting with non-critical workloads, then sharing aux-
iliary services, and ultimately applying slowdowns to full systems
if acceptable.

Once again, we believe hybrid strategies—combining opportunis-
tic elasticity with guaranteed service levels—hold the most promise.
Several directions emerge for functional units:

• Remove functionalities:Managing functionalities at the
functional unit granularity gives the cloud provider greater
visibility and control over what can be avoided, reduced (or
delayed), and offsettable impacts. Certain background pro-
cesses, redundancy mechanisms, or optional features (e.g.,
real-time replication, aggressive caching, or analytics mod-
ules) could be selectively deactivated for low-priority ser-
vices or clients willing to accept a leaner setup, freeing up
resources while preserving core functionality.

• Tame performance loss: A key success factor is the ability
to contain the performance degradation in a predictable and
controlled way. Equally important is communicating the
environmental benefits of frugal configurations to clients,
encouraging adoption.

• Communicate gains: Just as important as the savings them-
selves is making them visible to users. Showing clear metrics
(e.g., energy saved, carbon footprint reduced) can transform
frugality from a technical trade-off into a value proposition
for sustainability.

4.2 A collective hosting provider perspective
Let us turn our attention to community-driven digital hosting so-
lutions outside of the cloud paradigm. We will specifically take in-
terest in Deuxfleurs [16]: a French association that provides digital
services (e-mail, static websites, videoconferencing, collaborative
editing, etc.) to the civil society, including individuals, collectives,
and enterprises. This endeavor—to offer end-user digital services as
a non-commercial commons—is gaining momentum. In France, the
CHATONS [10] federation now brings together around 90 such host-
ing collectives. In this landscape, Deuxfleurs’ originality lies in its
infrastructural design choices: a production cluster of only 7 second-
hand desktop computers—distributed among the households of 3
of their members using domestic fiber optics connections—supplies
the totality of their services.

Deuxfleurs developed a distributed object store tailored for low-
end workers communicating through high-latency WAN links,
coined Garage [18]. It tolerates the disconnection of a full availabil-
ity zone (out of three) without interrupting its operation. Garage



The Case for Time-Shared Computing Resources LIMITS ’25, June 26–27, 2025, Online

notably backs the static website hosting service, making it as re-
silient and available as cloud offerings. We focus our analysis on
this service.

4.2.1 Current situation. The material envelope of Deuxfleurs’ in-
frastructure is salient: the 7 desktop computers constituting the
production cluster. The association intends to keep at this enve-
lope for the foreseeable future, and to organize the sharing of these
material resources by constraining and optimizing usages, instead
of elastically scaling its envelope. Deuxfleurs currently hosts more
than 500 static websites. It estimates that its network and storage
budget are only used at 4% and 6% of their capacity, respectively.
Because only static websites are served, the CPU footprint (mostly
caused by HTTPS cryptography) is negligible.

At the time of writing, a simple quota mechanism ensures a
fair sharing of the storage space among users: each website is
allowed 50 MB of storage, which can be increased up to 200 MB
in autonomy by its owner. The motivation for such a mechanism
is to raise awareness about the material impacts of our digital
actions. If a use-case requires more storage (e.g., a graphical artist
or musician’s portfolio), a custom quota for the website is proposed
after a collective discussion.

4.2.2 Leads. We now outline key challenges associated with the
mutualization of computing resources in collective hosting and how
Deuxfleurs envisions addressing them.

CPU time-sharing. Despite their unmatched simplicity, static
websites lack the interactivity that once popularized Web 2.0, such
as participatory features (forms, comments, likes), access control
(e.g., for administrative back offices), advanced search capabilities,
and more. All of these require server-side code execution, i.e., CPU
resources, that Deuxfleurs would like to propose in its future ser-
vice offerings, at the granularity of the function. To ensure fair
sharing of compute resources among different tenants, Deuxfleurs
is considering implementing a function execution queue based on
sequential time-sharing, where each function’s priority is weighted
by the requesting website’s karma: the higher the karma, the higher
the execution priority. Karma would decrease upon each execution
and gradually replenish over time. When a website’s karma would
reach zero, its requested executions would have the lowest priority,
and could even be dropped in case of overflow.

Incentivize responsible behavior on shared resources. The associ-
ation recently witnessed slow time-to-first-byte on website GET
requests. This issue stemmed from two main causes: a failing disk
limiting the throughput of the object store (prompting an urgent
replacement), aggravated by bursts of excessively high rates of
PUT requests (i.e. websites updates). These bursts are caused by the
careless implementation of some automation deployment tooling,
typically re-uploading a whole website instead of cherry-picking
what needs synchronization.

A feedback control algorithm (akin to TCP’s AIMD [12]) is being
developed to limit the consequences of such administrative traffic
on the websites’ responsiveness. In this time-shared policy, the
acceptance window for PUT requests will be voluntarily shrunk
under heavy load and gradually expanded as congestion decreases..
This approach will naturally penalize poorly designed automation
pipelines that flood the system, encouraging administrators to adopt

more efficient, minimalist deployment strategies. Which is precisely
the goal: a limited, shared infrastructure must be operated with
respect and care.

Monetary Cost-Sharing. Computing resources are inherently tied
to cost-sharing mechanisms. While the business model of cloud
computing providers is clearly established and commercially op-
timized, operating similar infrastructures as a non-profit organi-
zation presents unique challenges. Associations must explore and
adopt alternative, community-oriented economic models to ensure
sustainability.

Deuxfleurs invested 786 € for Garage in 2024 [15]. Hard drives &
SSDs represent the majority of this expenditure: they are the most
consumable hardware parts of the infrastructure, andmust regularly
be replaced. The electrical cost of the servers is unmonitored and
graciously paid for by the hosting volunteers, but it is estimated to
represent several hundred euros annually. Users’ contributions &
donations currently cover all of the association’s recurring costs.
However, in 2024, Deuxfleurs began offering hosting services to web
agencies, who willingly pay a reasonable fee for the association’s
resilient and responsible static website hosting.

The ambition is to keep Deuxfleurs a community-driven en-
deavor, with infrastructural decisions being made by its members &
users on an equal footing. To advance as a serious digital governance
proposition, the association fosters economic activity developing
on top of its commons, and intends to employ its financial resources
to support future software development, public advocacy, design
as well as design and arts initiatives.

5 Conclusion
In this paper, we advocated for a more efficient sharing of comput-
ing resources within hosting infrastructures. While spatial shar-
ing—allocating distinct resource pools to different clients—is a com-
mon practice, temporal sharing remains largely under-exploited.

Yet, time-sharing offers a compelling paradigm: allocating a re-
source over time to multiple workloads is often more efficient and
sustainable than dedicating separate resources to each use case.
Although time-sharing was a foundational principle in the early
days of ICT, its prominence has faded with the proliferation of
abundant computing capacity.

We argued that the future of ICT is likely to be more con-
strained—due to environmental, economic, and physical limits—and
that a revival of time-sharing strategies will become increasingly rel-
evant. We have explored how modern time-sharing can be reimag-
ined and applied within contemporary hosting computing models,
ranging from infrastructure-level virtualization to higher-level func-
tional services.

Finally, we outlined concrete directions for implementing time-
sharing in both industrial cloud platforms and community-driven
hosting initiatives, as a means to foster more frugal, efficient, and
sustainable digital infrastructures.

Acknowledgments
This work was partially supported by Mitacs and OVHcloud under
project IT42864.



LIMITS ’25, June 26–27, 2025, Online Jacquet et al.

References
[1] Amazon AWS. Burstable performance instances, 2025. Available

at https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-
performance-instances.html. Last accessed on 2025/06/22.

[2] Amazon AWS. The EC2 approach to preventing side-channels, 2025. Avail-
able at https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-
nitro-system/the-ec2-approach-to-preventing-side-channels.html. Last accessed
on 2025/06/22.

[3] Amvrosiadis, G., Park, J. W., Ganger, G. R., Gibson, G. A., Baseman, E., and
DeBardeleben, N. On the diversity of cluster workloads and its impact on
research results. In Annual Technical Conference (ATC) (Boston, MA, USA, 2018),
USENIX.

[4] Arms, W. Early Timesharing, 2015. Available at https://www.cs.cornell.edu/wya/
AcademicComputing/text/earlytimesharing.html. Last accessed on 2025/06/22.

[5] Bashir, N., Deng, N., Rzadca, K., Irwin, D., Kodak, S., and Jnagal, R. Take It to
the Limit: Peak Prediction-Driven Resource over-commitment in Datacenters. In
European Conference on Computer Systems (EuroSys) (New York, NY, USA, 2021),
ACM.

[6] Bashir, N., Gohil, V., Subramanya, A. B., Shahrad, M., Irwin, D., Olivetti,
E., and Delimitrou, C. The sunk carbon fallacy: Rethinking carbon footprint
metrics for effective carbon-aware scheduling. In Symposium on Cloud Computing
(SoCC) (New York, NY, USA, 2024), ACM.

[7] Bessai, R., Bendor, R., and Balkenende, R. Fit for Purpose: Four considerations
of how matter becomes material. In Computing within Limits (2023), LIMITS.

[8] Bugeau, A., and Ligozat, A.-L. How digital will the future be? Analysis of
prospective scenarios. In Computing within Limits (2024), LIMITS.

[9] Cerf, S., Luxey-Bitri, A., Quinton, C., Rouvoy, R., Simon, T., and Truffert,
C. Untangling the Critical Minerals Knot: when ICT hits the Energy Transitions.
Preprint, 2023.

[10] CHATONS collective. Collectif des Hébergeurs Alternatifs, Transparents,
Ouverts, Neutres et Solidaires, 2025. French. Available at https://www.chatons.
org/. Last accessed on 2025/06/22.

[11] Chiang, J.-H., Li, H.-L., and cker Chiueh, T. Working Set-based Physical
Memory Ballooning. In International Conference on Autonomic Computing (ICAC)
(San Jose, CA, USA, 2013), USENIX Association.

[12] Chiu, D.-M., and Jain, R. Analysis of the Increase and Decrease Algorithms for
Congestion Avoidance in Computer Networks. Computer Networks and ISDN
Systems (1989).

[13] Cortez, E., Bonde, A., Muzio, A., Russinovich, M., Fontoura, M., and Bian-
chini, R. Resource Central: Understanding and Predicting Workloads for Im-
proved Resource Management in Large Cloud Platforms. In Symposium on
Operating Systems Principles (SOSP) (New York, NY, USA, 2017), ACM.

[14] Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,
H., Swinehart, D., and Terry, D. Epidemic algorithms for replicated database
maintenance. In Symposium on Principles of Distributed Computing (1987), ACM.

[15] Deuxfleurs association. 2024 Financial Report – 2025 General Assembly. Tech.
rep., Jan. 2025. French. Available at https://guide.deuxfleurs.fr/vie_associative/
ag2025/#bilan-comptable-2024. Last accessed on 2025/06/22.

[16] Deuxfleurs association. Deuxfleurs : fabriquons un internet convivial, 2025.
French. Available at https://deuxfleurs.fr/. Last accessed on 2025/06/22.

[17] Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G. S., and
Friday, A. The real climate and transformative impact of ICT: A critique of
estimates, trends, and regulations. Patterns (2021).

[18] Garage team. An Open-Source Distributed Object Storage Service Tailored for
Self-Hosting, 2025. Available at https://garagehq.deuxfleurs.fr/. Last accessed on
2025/06/22.

[19] Hadary, O., Marshall, L., Menache, I., Pan, A., Greeff, E. E., Dion, D.,
Dorminey, S., Joshi, S., Chen, Y., Russinovich, M., andMoscibroda, T. Protean:
VM allocation service at scale. In Symposium on Operating Systems Design and
Implementation (OSDI) (2020), USENIX Association.

[20] Hamant, O. Antidote au culte de la performance : La robustesse du vivant. Tracts
(2023). French.

[21] IBM. z/VM – A Brief Review of Its 40 Year History, 2012. Available at http:
//www.vm.ibm.com/vm40hist.pdf. Last accessed on 2025/06/22.

[22] International Energy Agency. Energy and AI, 2025. Available
at https://iea.blob.core.windows.net/assets/dd7c2387-2f60-4b60-8c5f-
6563b6aa1e4c/EnergyandAI.pdf. Last accessed on 2025/06/22.

[23] Jacqet, P., Coti, C., de Assuncao, M. D., and Rouvoy, R. CINERGY: Reasoning
over the Worst Case Power Consumption of Cloud Virtual Machines. In CGrid)
(May 2025), IEEE.

[24] Jacqet, P., Ledoux, T., and Rouvoy, R. CLOUDFACTORY: An Open Toolkit to
Generate Production-like Workloads for Cloud Infrastructures. In International
Conference on Cloud Engineering (IC2E) (2023).

[25] Jacqet, P., Ledoux, T., and Rouvoy, R. SCROOGEVM: Boosting Cloud Resource
Utilization With Dynamic Oversubscription. IEEE Transactions on Sustainable
Computing (2024).

[26] Jacqet, P., Ledoux, T., and Rouvoy, R. SlackVM: Packing Virtual Machines in

Oversubscribed Cloud Infrastructures. In CLUSTER (2024), IEEE.
[27] Jacqet, P., Ledoux, T., and Rouvoy, R. SweetspotVM: Oversubscribing CPU

without Sacrificing VM Performance. In CCGrid (2024), IEEE.
[28] Linux. Kernel Samepage Merging, 2009. Available at https://www.kernel.org/

doc/html/latest/admin-guide/mm/ksm.html. Last accessed on 2025/06/22.
[29] Linux. zram: Compressed RAM-based block devices, 2022. Available at https:

//docs.kernel.org/admin-guide/blockdev/zram.html. Last accessed on 2025/06/22.
[30] Linux. Memory Hot(Un)Plug, 2025. Available at https://www.kernel.

org/doc/html/latest/admin-guide/mm/memory-hotplug.html. Last accessed on
2025/06/22.

[31] Maurice, C., Weber, M., Schwarz, M., Giner, L., Gruss, D., Boano, C. A.,
Roemer, K., and Mangard, S. Hello from the Other Side: SSH over Robust
Cache Covert Channels in the Cloud. In Network and Distributed System Security
Symposium (NDSS) (San Diego, United States, 2017), Internet Society.

[32] Meyer, R. A., and Seawright, L. H. A virtual machine time-sharing system.
IBM Systems Journal (1970).

[33] Microsoft Azure. B-series burstable virtual machine sizes, 2024. Avail-
able at https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-
burstable. Last accessed on 2024/09/01.

[34] OVHcloud. Discovery, 2025. Available at https://us.ovhcloud.com/public-cloud/
discovery/. Last accessed on 2025/02/17.

[35] Rupp, K. Microprocessor trend data Repository, 2021. Available at
https://github.com/karlrupp/microprocessor-trend-data.

[36] Simon, T., Ekchajzer, D., Berthelot, A., Fourboul, E., Rince, S., and Rouvoy,
R. BoaviztAPI: a bottom-up model to assess the environmental impacts of cloud
services. In HotCarbon (2024).

[37] Simon, T., Rust, P., Rouvoy, R., and Penhoat, J. Uncovering the Environmental
Impact of Software Life Cycle. In International Conference on ICT for Sustainability
(ICT4S) (2023).

[38] Stoica, I., and Abdel-Wahab, H. Earliest eligible virtual deadline first: A flexible
and accurate mechanism for proportional share resource allocation. Tech. rep.,
Norfolk, VA, USA, 1995.

[39] Tirmazi, M., Barker, A., Deng, N., Haqe, M. E., Qin, Z. G., Hand, S., Harchol-
Balter, M., and Wilkes, J. Borg: the next generation. In European Conference
on Computer Systems (EuroSys) (New York, NY, USA, 2020), ACM.

[40] U.S. Bureau of Economic Analysis. Private fixed investment, chained price
index: Nonresidential: Equipment: Information processing equipment: Computers
and peripheral equipment, 2025. Available at https://fred.stlouisfed.org/series/
B935RG3Q086SBEA. Last accessed on 2025/06/22.

[41] Wang, Y., Arya, K., Kogias, M., Vanga, M., Bhandari, A., Yadwadkar, N. J., Sen,
S., Elnikety, S., Kozyrakis, C., and Bianchini, R. SmartHarvest: Harvesting Idle
CPUs Safely and Efficiently in the Cloud. In European Conference on Computer
Systems (EuroSys) (New York, NY, USA, 2021), ACM.

[42] Wong, C. S., Tan, I., Kumari, R. D., and Wey, F. Towards Achieving Fairness in
the Linux Scheduler. SIGOPS Opererating Systems Review (2008).

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/the-ec2-approach-to-preventing-side-channels.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/the-ec2-approach-to-preventing-side-channels.html
https://www.cs.cornell.edu/wya/AcademicComputing/text/earlytimesharing.html
https://www.cs.cornell.edu/wya/AcademicComputing/text/earlytimesharing.html
https://www.chatons.org/
https://www.chatons.org/
https://guide.deuxfleurs.fr/vie_associative/ag2025/#bilan-comptable-2024
https://guide.deuxfleurs.fr/vie_associative/ag2025/#bilan-comptable-2024
https://deuxfleurs.fr/
https://garagehq.deuxfleurs.fr/
http://www.vm.ibm.com/vm40hist.pdf
http://www.vm.ibm.com/vm40hist.pdf
https://iea.blob.core.windows.net/assets/dd7c2387-2f60-4b60-8c5f-6563b6aa1e4c/EnergyandAI.pdf
https://iea.blob.core.windows.net/assets/dd7c2387-2f60-4b60-8c5f-6563b6aa1e4c/EnergyandAI.pdf
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/ksm.html
https://docs.kernel.org/admin-guide/blockdev/zram.html
https://docs.kernel.org/admin-guide/blockdev/zram.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://learn.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://us.ovhcloud.com/public-cloud/discovery/
https://us.ovhcloud.com/public-cloud/discovery/
https://fred.stlouisfed.org/series/B935RG3Q086SBEA
https://fred.stlouisfed.org/series/B935RG3Q086SBEA

	Abstract
	1 Introduction
	2 State of the Art
	2.1 From constrained environments...
	2.2 ...To modern ICT

	3 Principle
	3.1 Time-Sharing units
	3.2 Time-Sharing policies
	3.3 Time-Sharing resources
	3.4 Choosing service envelopes
	3.5 On other impacts

	4 Potential implementations
	4.1 A cloud provider perspective
	4.2 A collective hosting provider perspective

	5 Conclusion
	Acknowledgments
	References

