
Materiality Matters in Computing Education:
A Duoethnography of Two Digital Logic Educators

Eric J. Mayhew∗

McGill University
Montréal, Québec, Canada
eric.mayhew@mail.mcgill.ca

Elizabeth Patitsas∗

McGill University
Montréal, Québec, Canada
elizabeth.patitsas@mcgill.ca

ABSTRACT
Computer science needs to be sustainable, and CS educators
have an important role to play in changing the discipline.
Recent efforts have emerged to teach CS in ways that apply
computing to mitigate climate change, but this alone is insuf-
ficient: we must also change what it means to do computing.
We use duoethnography to interrogate our practices as CS
educators to support the goal of integrating sustainability
into CS. Despite being invested in these goals, we each real-
ized that we had been nevertheless reinforcing the cultural
norms that underpin the environmental and social damage
caused by computing. We found five themes in the qualitative
analysis of our reflections: (1) A lack of materiality in CS
classes makes it difficult for computer scientists to scruti-
nize the environmental costs of hardware, (2) The discourse
on “greenness” in computing neglects the role of embodied
emissions, (3) The lack of context in CS education teaches
students to perceive the status quo as “natural", (4) Those
who have bought into the dominant ideology of CS can be
resistant to innovating CS education, and (5) Materiality
helps with teaching computing. We illustrate how changing
CS to become more sustainable requires deeper thought than
“add sustainability and stir” to the curriculum, and insights
toward addressing the root ideology of CS education.

KEYWORDS
computer science education, computing education, sustain-
ability, digital logic, climate crisis, e-Waste
Reference Format:
Eric J. Mayhew and Elizabeth Patitsas. 2021. Materiality Matters
in Computing Education: A Duoethnography of Two Digital Logic
Educators. In LIMITS ’21: Workshop on Computing within Limits,
June 14–15, 2021 .

∗Both authors contributed equally to this research, and are listed in
alphabetical order.

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LIMITS ’21, June 14–15, 2021,
© 2021 Copyright held by the owner/author(s).

1 INTRODUCTION
Computer science (CS) has an important role to play in
mitigating the climate crisis: CS can be applied to issues
of climate modelling, and in providing tools for political
organizing, citizen science, resource optimization, and chang-
ing consumer behaviour. But CS also has an environmental
footprint that must be reckoned with. This includes ever
growing e-waste [70], operational energy costs (e.g. [3]), and
environmental damage from resource extraction [9].

Yet sustainability and the climate crisis are seldom talked
about in computing classrooms. Many of us are working to
incorporate sustainability into CS education, such as through
supporting teachers [18, 50] and students in integrating sus-
tainability [35, 37, 77, 78, 84]. These efforts are complicated
by the contested definitions of sustainability, such as the en-
vironmental, social, and economic framings of sustainability
[19, 53]. Regardless of the definition of sustainability, many
computing educators claim they had not considered incorpo-
rating sustainability in their teaching, and others don’t see
the connection between sustainability and CS concepts like
algorithms [51].

The LIMITS community, which is concerned with the
ecological and social limits of computing, has long recognized
the importance of education as a leverage point for improving
the sustainability of CS [42], with one paper going so far as to
state that “Educational approaches will often be the easiest
to implement” [15].

We illustrate how changing CS education is hardly easy;
it is not just a matter of persuading more educators to add
sustainability to their curricula. Through our duoethnography
we demonstrate how, even for educators who approach CS
teaching with the goals of instilling ethical practice, there are
many ways that the disciplinary norms of CS can undermine
these intentions.

In particular, we discuss how the immateriality of CS con-
tributes to a status quo that underestimates and separates
CS’s responsibility in climate change. Both of us have exten-
sive experience teaching digital logic and were both proud
of the innovations we had each made to teaching it — only
to realize upon learning about the environmental costs of
integrated circuit (IC) production that neither of us had
addressed this when teaching with ICs.

Through our reflections, we contribute to the LIMITS
community some insights as education researchers into how
to teach computing within limits [42], pitfalls that interested
educators may encounter, and disciplinary norms of CS that
must change to address the climate crisis.

LIMITS ’21, June 14–15, 2021 Mayhew and Patitsas

To connect our experiences to documented sociological phe-
nomena, we draw on literature from science and technology
studies (STS), the interdisciplinary field of study that exam-
ines the reciprocal relationships between science, technology
and society. Feminist STS has a rich literature looking at how
science and technology are socially constructed as disciplines,
including how education plays a vital role in establishing
the boundaries [4, 43], epistemic cultures [20, 38], exclud-
ed/included demographics [68, 83] and cultural norms/values
[5, 13, 54, 80] of different technoscientific disciplines.

2 METHODS
2.1 What is a duoethnography?
Norris [57] describes a duoethnography as “a collaborative
research methodology in which two or more researchers of
difference juxtapose their life histories to provide multiple
understandings of the world”. This centres the researchers as
the research site, as the authors “interrogate and reinscribe
previously held beliefs" [57]. We chose duoethnography as
our method because it allowed us to speak from and about
our personal experiences as CS educators.

Duoethnography (also known as co-autoethnography) was
first popularized in education research (e.g. [59, 75, 81]),
gender studies, and critical ethnic studies [33]; and has since
grown in use in HCI research (for a review see [33]), allowing
for generative views of sociotechnical systems and exposition
of “the ways that contexts connect and even conflict” [41].
For examples, see [22, 23, 41, 88].

Norris [56] has outlined four precepts of this research genre:
(1) It is dialogic, where the narratives of the researchers

are positioned in juxtaposition to each other. It inten-
tionally disrupts the typical nature of metanarratives
that can emerge from solitary writing (including col-
laborative writing synthesized within a single authorial
voice).

(2) It facilitates reconceptualization of past experiences
and stories by allowing the other researcher to challenge
the adequacy of the frames held in interpretation. It
is not authoritative in stance, but rather positions the
reader as an active Other in meaning making, and
therefore as an implicit co-author.

(3) It positions differences as crucial to exploring a larger
shared experience. Duoethnographies position differ-
ences between the writers’ points of view as a strength
and an opportunity to explore different meanings to a
shared phenomenon.

(4) The methodology must remain open and flexible, to
avoid becoming prescriptive. Duoethnographies do not
need to adhere to a set procedure.

This process of narrating and reflecting on our experiences
and beliefs are to encourage you, the reader, to recall your
experiences and consider how the materiality of computing
might connect to your own context. Indeed, this is a com-
mon goal of qualitative research, and is known as reader
generalization (a.k.a. transferability) [71]. To support reader
generalization, we provide thick description: rich, thorough

descriptive information, to give the reader the “raw” experi-
ence that they too can interpret [71].

Reader generalization, along with statistical generaliza-
tion and analytic generalization, comprise the three types
of generalization in research methodology [71]. Statistical
generalization refers to the practice of sampling from a pop-
ulation to discern information about the population as a
whole; larger sample sizes and random sampling are associ-
ated with a better representation the population in question.
Duoethnography does not attempt to provide statistically
generalizable findings.

Analytic generalization is a major goal of duoethnography.
Analytic generalization is when a researcher generalizes from
the particular to broader theoretical constructs. In our paper,
we will be linking our experiences to relevant sociological
theories to demonstrate both how our experiences exemplify
these sociological phenomena, and how these sociological
phenomena manifest themselves in this particular context.

2.2 What was our process?
Our duoethnography was incited by reading Gabrys’ Silicon
Elephants chapter of Digital Rubbish: A Natural History of
Electronics [32]. This chapter sheds light on all the social and
physical “inputs” of ICs that are often omitted from com-
mon descriptions of IC input/outputs, such as the social and
environmental costs of ICs. We read this as part of our lab’s
weekly reading group. For our reading group, members often
mark up the same PDF with thoughts and reactions. We (the
authors) noticed many similarities in the annotations. Specifi-
cally, many CS students in the group shared similar reactions
about how they felt their CS education was very abstract
and disconnected from society. During the discussion of the
reading, we (the authors) spoke of how this paper made us
reflect more critically on our teaching, often cringing at what
we felt we did wrong. Considering how transformative this
paper was for us, Elizabeth suggested turning our reflections
as educators into a formal publication. Our intent in writing
this paper was to critically analyze our experience teaching
digital logic in a material way, to help support others to do
the same, and to generate what we consider much-needed
conversation around the environmental costs of computing.

We began writing this by meeting and doing several “streams
of consciousness” writing sessions. These sessions involved
writing for 20 minutes about our reactions to the Silicon
Elephants chapter and how it made us think differently about
our teaching. After each 20 minute writing block, we shared
our writings with each other and exchanged ideas, reactions,
and compared our experiences. This in turn generated a
whole new set of ideas and questions to reflect on, which
initiated our next writing session. We did this five times until
we had several pages (about 10k words) of initial reflection.

We then each qualitatively analyzed our own reflective
writings, looking for general themes and topics that emerged.
For each theme or idea we spotted, we created a sticky note
on a shared virtual whiteboard. We then began spatially
organizing the sticky notes so that similar ideas were closer

Materiality Matters in Computing Education:
A Duoethnography of Two Digital Logic Educators LIMITS ’21, June 14–15, 2021

to each other (affinity mapping). From there, we saw a few
general themes from our writings. Then we began writing
the paper around these themes, and iteratively conducting
additional stream-of-consciousness sessions as new themes
emerged.

Our raw streams of consciousnesses naturally included a
number of sociological concepts given ours background in STS
and sociology. When we analyzed our reflections, we discussed
how different papers and theoretical frameworks emerged.
Feminist STS, particularly the works of Haraway and Breslin
were the most common frameworks we invoked1. We also
had references to neo-Marxist sociology and sociocultural
education. In discussing the themes and concepts in our
reflections, we realized that Breslin’s work tied everything
together parsimoniously, since Breslin explicitly drew on
Haraway, Gramsci, and sociocultural education in her work.

2.3 Theoretical basis
Our work builds on anthropologist Samantha Breslin’s The
Making of Computer Scientists [17], an ethnographic analysis
of how an undergraduate CS education builds a particular
type of social identity which contributes to the problematic
aspects of computing as a discipline. This happens through an
education that frames CS knowledge as though it is objective
and as something that is disconnected from the social world.

2.3.1 Feminist Epistemology and The God Trick. Using the
work of Donna Haraway, Breslin shows how students are
taught by authority that CS is objective, in contrast to many
contemporary understandings of epistemology which assert
that all knowledge produced by humans is situated in the
context it was produced in and limited by the perspective of
the knower [39]. Indeed, for feminist philosophies of science
like Haraway, embracing the partiality of scientific knowledge
is necessary for science to live up to its ideals of transparency
and reproducability [39, 80]. Denying the partiality of sci-
ence leads to distrust of science, especially by those who are
actively harmed by its false claims of objectivity [61].

Haraway coined the notion of the “God Trick” to refer to
the myth that the scientific process yields so-called “objec-
tive” truths about the world, creating knowledge that “see
everything from nowhere”. However, since all knowledge is
situated in the context of its origin, “objectivity” only masks
a particular standpoints (generally Western, male, abled,
white, etc) as purportedly “universal truths”.

Indeed, feminist approaches to scientific methodology stress
situating one’s self in one’s research, and being continually re-
flexive about how one’s standpoint affects the knowledge one
produces [40]. Our act of writing in the first-person for this
paper is in line with this feminist methodology, reinforcing
how research is an activity carried out by humans.

2.3.2 Cultural Hegemony. Breslin also draws on Antonio
Gramsci’s notion of cultural hegemony to demonstrate how

1For the purposes of this research, we will also work with an environ-
mental interpretation of sustainability, as that is what emerged from
our data.

the enculturation of CS students leads them to buy in to
dominant-group ideology. To Gramsci, cultural hegemony “is
a social condition in which all aspects of social reality are
dominated by or supportive of a single class” [29]; through
culture, the dominating class can manipulate other groups
to buy into the dominant group’s beliefs and interests [34].

For example, “in capitalist society, journalists, the media
in general, and professors create the sense that capitalism is
efficient, egalitarian, natural, and so on [...]”, making difficult
or laughable to envision a world without it [34].

2.3.3 Rendering Technical. Finally, Breslin uses Tania Mur-
ray Li’s work on hegemonic processes in global development
[44]. Li defines “rendering natural” as a hegemonic process in
which a dominant group’s practices are seen as “natural” by
other groups — such as how exploitation, capitalism, envi-
ronmental destruction, extractivism, and neocolonialism are
presented in the global development community as natural
and unquestionable parts of human society and progress.

Li also defines “rendering technical”, which is the hege-
monic process in which development and environmental issues
have their contexts stripped away and turned into technical
“problems” in need of technical solutions. Technical solution-
ism acts a hegemonic norm in many environmental spaces
where local context and political action are neglected in
favour of shiny technological solutions [12, 46].

Breslin documents how a CS education teaches students
to render the world technical: to strip away all context of
“real world” problems, and see the world only in terms of
abstract computational problems, ready for computational
solutions. This is in contrast to context-appreciative design
philosophies such as Soft Systems Methodology in which a
modeller starts from fully immersing themself in the local
context, abstracts it to make a model, and then de-abstracts
it to meaningfully integrate it into its local situation [21].

Rendering technical serves to socially construct CS as
something that is separate from the “real” world that it inter-
acts with [17, 36]. The separation of CS from society and the
environment is in turn a hegemonic norm in the discipline
[5, 10, 10, 13, 24, 48]. Rendering technical also serves to assist
capitalist notions of production [11, 45, 55]. Together these
build the “I’m just an engineer” phenomenon [31, 60] that
in turn leads to computer scientists viewing sustainability
and social justice as outside their roles. And indeed, Mann et
al. found through surveying CS students about their moral
development that 79% percent of CS students agreed with at
least one of these statements: “Computing is largely theoreti-
cal or technical - with little consequence”, “There is no room
in business for soft things like ethics, if your competitor does
it then you can”, and “Business is a special case; the ethics
are different to personal life”. [49]

2.4 Who are we?
2.4.1 Elizabeth. I am currently an assistant professor at
McGill University, specializing in CS education. I bring to
this duoethnography over a decade of experience with teach-
ing CS at large, public, research-intensive universities (namely,

LIMITS ’21, June 14–15, 2021 Mayhew and Patitsas

the University of British Columbia, University of Toronto,
and McGill University), along with what I have now come
to realize is a relatively unusual experience of a CS under-
graduate that exposed me to physical electronics, in part
through a minor in physics. My background situates me well
for appreciating the use of electronics in CS education.

I am a disabled, queer, white settler. Throughout my CS
teaching career I’ve emphasized applications and social con-
text, and taken pride in sharing my teaching materials with
others. I have published multiple papers sharing experiences
and research on my teaching of introductory programming
(CS1) [35, 63], digital logic [62, 65–67], and algorithms &
data structures [64, 69].

2.4.2 Eric. I am currently a master’s student in CS education
at McGill with Elizabeth as my supervisor. Like Elizabeth, I
bring to this duoethnography my experience of being a CS
educator and student dedicated to bringing social justice into
my practice. Unlike Elizabeth, I learned CS mostly through
informal settings like YouTube videos and my social network,
and most of my CS teaching has also been in informal settings.

I identify as a gay, white, disabled man. I ran a student-
led 24-lesson workshop on computing, with a large focus
on digital logic with my boyfriend. I also have experience
teaching from the several internships I did as requirements for
my B.Ed. Because I am relatively new to CS, my perspective
also illuminates the contemporary learning of CS.

2.5 A Word on Style
This paper will include coloured text boxes containing ex-
cerpts from our stream of consciousness writings (lightly
edited for clarity), surrounded by analysis.

As discussed in subsection 2.1, this is to give you (the
reader) a sense of the data we produced so that you can
interpret for yourself if the data is transferable (reader gen-
eralizability) and to illustrate the richness of the text.

We begin this paper with our initial reactions to Silicon
Elephants, and from there focuses on five main themes that
emerged from our reflections.

3 BACKGROUND: SILICON ELEPHANTS
We begin with our reactions to reading Silicon Elephants [32].
This chapter illustrates how ICs are tied up in complicated
social, political, environmental systems that are often forgot-
ten when one considers the “input” and “outputs” of ICs.
Indeed, ICs have significant costs to the environment and
people who make them, yet this is rarely considered part of
ICs’ inputs and outputs.

Elizabeth:

It wasn’t until I got to the second page that really my eyes started
to widen [at the cold, gruesome details of cost and consumption in
IC manufacturing]:

“From design to manufacture, the typical microchip (as pro-
duced at Intel) requires more than 200 workers, two years,
and considerable material and chemical inputs [...] generally

speaking, the input of chemicals, gas, light, and other mate-
rials can require up to 300 phases to reach a complete chip.
Many of these material inputs are not reflected in the end
electronic product but are instead discarded as part of the
hidden resource flows that contribute to electronics. In fact,
microchips require far more resources than these miniature
devices imply. To produce a two-gram memory microchip,
1.3 kilograms of fossil fuels and materials are required [...]
as much as 99 percent of materials used discarded during
the production process.
[...]
The clean rooms within fabrication facilities (or “fabs”)
where microchips are assembled are zones specifically de-
signed to be free of dust, as even the smallest impurity may
ruin the minute transistors. Workers ... don uniforms ... not
so much to protect themselves from the chemicals but to
protect the microchips from the dirt and debris that work-
ers bring into the clean rooms. An uncanny inversion of
waste occurs with microchip production, where clean rooms
ensure the purity of electronics while simultaneously con-
tributing to the contamination of workers’ bodies, many of
whom are low-paid immigrants and women of color.”

Reading about the actual details of how microchips were made
and their social and environmental costs was horrifying. I had
known they were bad but it was still something to have a 26-page
paper lay it all out there.

For my student Hana [a McGill undergrad in CS] it was all new
to her, and she shared [via comments on the PDF]:

“I don’t know if other people had this, but this reminds me
of learning about circuits in a way that was totally removed
from physical circuits (I don’t even know if they used the
word circuit, I think it was just presented as logic) — they
also showed images of physical representations like a door
latch to explain latches but no images of ICs — just pre-
sented as abstract math and diagrams”

It got me to thinking about my own experience of learning about
circuits. I actually did wind up doing labs with ICs thanks to CPSC
121 [digital logic] at UBC. Obviously at McGill it wasn’t the same.
And it did remind me of CPSC 313 [operating systems] at UBC
where they talked about transistors but only showed them as logic
diagrams; I don’t even remember photos of physical transistors.

The discussion based on Hana’s comment in reading group
made me realize that it was unusual that I even handled ICs at
all in my CS undergrad, that the entirety of a McGill undergrad in
CS was like my experience of [operating systems].

Unfortunately, Eric, like Hana, had a very different intro-
duction to CS hardware that did not involve learning with
the actual hardware.
Eric:

I originally didn’t know ICs were still a thing you could buy
until my boyfriend told me! When running my workshop for fel-
low students not in CS, I really felt like my workshop was unique
because it incorporated ICs. Just the act of teaching hardware in
a material way was such a departure from how I saw ICs being
taught in YouTube videos and textbooks which all used logic gate
diagrams.

That begin said, having taught intro to hardware using ICs as
a pedagogical tool, I thought that I would encounter this kind of
teaching when I took my first hardware class at university. I was
sorely mistaken...

Materiality Matters in Computing Education:
A Duoethnography of Two Digital Logic Educators LIMITS ’21, June 14–15, 2021

Reactions to the paper also connected uncomfortable dots
for both Eric and Elizabeth with respect to their teaching of
hardware, teaching they were each proud of:

Elizabeth:
It got me to thinking about how I taught 121 and the scholarship

I produced with my UBC collaborators about 121 [digital logic]. I’d
been so proud that we had realized the importance of giving stu-
dents actual circuits to build, to enjoy actually playing with cir-
cuits and making the LEDs light up. But I realized with shame
that I’d never connected the physicality of circuits with the many
costs of manufacturing.

Eric:
This paper was a real eye opener for me. My first thought was

back to when I taught hardware to fellow students. I used ICs all
throughout the lessons, and presented ICs with a sense of rever-
ence and awe towards their power, compactness, and innovation
but never talked about what they cost. I wanted others to under-
stand that ICs were good:, efficient, powerful, revolutionary – and
being so caught up with this goal I never considered how ICs could
be harmful. I thought I had done such a good job in my teaching,
especially for using and playing with ICs as part of learning. But
this paper made me think more critically about my teaching and
what kind of image of ICs I passed on to my peers, and of course,
that’s uncomfortable, especially since I was so proud of my teach-
ing!

Reading Silicon Elephants brought out uncomfortable yet
rich reactions from Elizabeth and Eric, both students and
educators. Interrogating our reactions allowed us to better
understand how educators dedicated to sustainable CS can
be completely unaware of these painful realities.

4 THEME 1: HEGEMONIC
IMMATERIALITY

Our first theme surrounds how the materiality of computing
is obscured in CS education. By material, we mean what is
made of matter; and by materiality we mean relatedness to
material aspects (as opposed to conceptual/mathematical).
This absence of materiality (immateriality) manifests itself in
many ways through Eric’s and Elizabeth’s experiences teach-
ing and learning CS, and actively resist efforts to incorporate
materiality in CS education.

4.1 Rendering Technical and Externalization
In Breslin’s ethnography, she contributes an analysis of hege-
monic identity in CS. One hegemonic facet she documents is
how a CS education teaches students to “render the world
technical” [17]. Students are taught to take real-world prob-
lems and render them into purely technical problems. The
sociopolitical contexts are stripped away and seen as sepa-
rate and unrelated to CS. With time, students become so
accustomed to this rendering that they see the whole world
this way [17]. Both of us could relate:

Elizabeth:
I certainly [rendered technical] when I took [CS1] as an under-

grad. I started seeing everything in terms of programming prob-
lems and I felt SO POWERFUL as a result.

One of the arguments I see (and have previously used) for wide-
spread computing literacy (which often really just means coding)
is that it is empowering. But we don’t really question where that
sense of power comes from and let’s be real, it’s a power that
comes from treating basically everything else as an externality.

The idea of rendering technical was a common theme lying
beneath the surface of both Eric’s and Elizabeth’s experiences
learning and teaching CS, especially when it came to the
materiality of CS. Rendering the world technical includes the
process of stripping the environmental and social context in
which computers are produced.

Both our reflections include pushing against (or being
pushed into) a technical rendition of computing that marginal-
izes the material, environmental, and human cost of comput-
ers. Our reflections of being ignorant (and at times resistant)
to considering the materiality of computing points to a larger
hegemony in CS where immaterial conceptions of computing
is the norm.

4.2 Rendering Magical: Coding as “Wizardry”
The sense that learning computing instills magic power shows
up frequently in materials used to motivate people to learn
about computing [85]. Indeed, Eric noted it in recollecting
on how computers were magical to him until learning about
digital logic:

Eric:
I remember before learning about computers, being so confused

by the phrase “computers are just 1s and 0s”. I knew what binary
was, kind of, it’s just a way to represent things using two digits. But
when I look at computers and see video games, browsing the inter-
net, chatting and video calling with friends, it didn’t make sense to
me how all this was “1s and 0s”. In particular, I didn’t understand
how a computer can “remember” a 1 or 0. It’s electricity, shouldn’t
it just dissipate?

It was only when I watched that a YouTube video that showed
how to a simple circuit can store an electrical charge (a “1”) did
things really click for me. I remember that moment so well, when
the way computers remembered made sense to me – it was such an
empowering feeling to turn something magical into something I
could do. This motivated me to find out the “trick” behind all the
magic I thought computers did. This was certainly a catalyst that
helped motivate me to learn more about CS.

While it is common for people to describe learning as em-
powering, we noted how the particular empowering feelings
of learning are commonly described in terms of magic tricks
and wizardry, unlike other forms of knowledge-based empow-
erment. To Eric, he had a sense that he was learning about
things had been opaque to him in a society that obscures
computing behind black boxes.

LIMITS ’21, June 14–15, 2021 Mayhew and Patitsas

For Elizabeth, the discourse of “creating something out
of nothing” differentiated the empowering feeling from com-
puting knowledge from the empowering feelings she got from
other previously-obscured domains:

Elizabeth:
There’s this sense that computing is “creating something out of

nothing” that I see tossed around all the time when talking about
how computing is a magic power.

I used to believe that it was creating something out of nothing. It
felt different from when I created solutions in the chem lab or built
physical equipment for my physics labs. Sure, those made me feel
smart and handy. But in computing, since it seemed that I wasn’t
using any solid, visible material objects other than my computer
to make a thing it /did/ seem like I was creating out of nothing.
So that powerful feeling felt magical, rather than handy.

But now I realize that this was predicated on a lie. It comes from
how the actual inputs have been hidden – the machine built with
conflict minerals, an electric grid that burns coal, the undersea in-
ternet cables that reflect British colonialism, and so on.

The sense of power that both Eric and Elizabeth describe
when learning CS can be attributed to the way that the
hegemonic immateriality of CS obscures and complicates
CS’s relationship to its impacts and origins in the world. The
persistent dis-origining [52] of computing from its worldly
context results in CS knowledge seeming out of this world.

In her Foucaultian analysis of code.org videos, Sara Vogel
dissected the association between coding and magic:

This discourse on personal agency, individualism, om-
niscience, and magic merges with neoliberal notions
about competition, as crystallized in comments such
as one uttered by Gabe Newell, the founder of the
gaming company, Valve: “The programmers of tomor-
row are the wizards of the future. You know you are
going to look like you have magic powers compared
to everybody else.” [85]

Vogel’s paper came to mind for Elizabeth in thinking about
how learning computing is motivated:

Elizabeth:
Now thinking of how [colleague] shows the code.org propa-

ganda [at the start of term in an introductory CS course] and Sara
Vogel’s takedown of it. There’s so much about that propaganda
that’s bad that Vogel takes apart. BUT one thing Vogel doesn’t get
into is how it presents code as creating something *out of nothing*.

The idea that code is “magic” and the creation of something out
nothing is a huge theme in intro coding propaganda and it sets
up this narrative that computing is immaterial. Super convenient
how it means you don’t have to think about the ugly reality of how
computing’s materiality is destroying the planet and debilitating
people in the Global South.

The “out of this world” framing of CS is highlighted in
Amrute’s ethnography of migrant IT workers in Germany.
Amrute uses Saïd’s notion of Orientalism in her work, which
refers to how cultures from what Europe traditionally saw as
“The Orient” (the Middle East, Northern Africa, South India,
etc) have been othered in a way that treated these lands

as exotic, magical, and barbaric [76]. Amrute uses this to
discuss how South Asians are perceived by white Germans as
better at IT work because of Orientalist notions that Indians
are Otherworldly [6].

4.3 Rejecting the Partiality of Knowledge
A second sense of “magic” showed up in our reflections, in
reference to how computing would reject the partiality of CS
knowledge.

By stripping away the environmental and social contexts
of computing, what is left behind can be mistaken for “magic”
by those who do not know better. While any education will
necessarily be incomplete, what we realized was problematic
was how CS educators, instead of being open and honest
about the partiality of CS knowledge, instead presented its
limits as “magical”.

For Elizabeth, it was telling that in CPSC 121 [Models
of Computation], a course she took in first year undergrad
and later went on to TA as lab coordinator, the breadboard
kit used to teach circuitry used was literally called “The
Magic Box”. While it usefully blackboxed aspects of circuitry
(voltage, wave generation, oscilloscopy, etc) that were outside
the learning goals of the course, it normalized a notion that
circuitry is “magic”, rather than something that could be
learned through physics or electrical engineering coursework.

4.4 The Obscuring Effects of Immateriality
Anusas and Ingold [7] point out in their discussion of modern,
Western design practice that it is shaped by an “imperative
to cast the material world in the guise of objects” [7]. The
material world is not limited to solid objects, and includes
non-object materiality such as electricity, fluids, gases, and
other physical phenomena. In this framing of materiality, the
touchable, enclosing surfaces of solid objects (like computer
cases or plastered walls) hides “all manner of electrical, chem-
ical, and mechanical workings; their parts, structures, and
conduits; and the energies, gases, and fluids they carry” [7].
The result is a greater alienation from the natural world, as
black boxing further obscures an individual’s understanding
and relationship to the inner workings of the objects around
them [7]. CS goes a step further than this by casting the
world into abstractions of objects.

For Elizabeth, abstractions were more difficult to learn
without the underlying physics. For example, learning about
analogue-to-digital conversion and issues of power supply
made it clear to her why digital logic uses a binary system.
But in her reflection, she realized that her students just take
it as magic that circuits would be this way.

Not only does the immateriality of CS result in an even
greater disconnection from the natural world, it makes it
harder for computer scientists to wrap their minds around
non-object materiality. While non-object materiality was an
easy sell for Elizabeth (physics background), it was alien to
Eric:
Eric:

I was at first reluctant to this definition. Firstly, I thought, mate-
rial must mean it’s touchable, physical, really just an object – what

Materiality Matters in Computing Education:
A Duoethnography of Two Digital Logic Educators LIMITS ’21, June 14–15, 2021

is material is an object that I can hold or touch. I found it hard to
consider things that weren’t physical objects to be material.

I initially explained to Elizabeth, "well people learn about elec-
tricity in the sense their computers use electricity, and binary is
essentially electricity, so CS students are learning electricity." But
she pointed out how CS education rarely talks more deeply about
electricity beyond binary. And honestly, she was right – even I re-
member trying to program my breadboard with NO knowledge
of resistors, capacitors, measuring electricity or anything. I know
from experience just playing with the breadboard did not teach me
about electrical engineering.

And as Eric reflected more, he came to realize his under-
standing of object-centric materiality came from the hege-
monic ideas about what is CS and what is not CS:

Eric:
Upon reflection, I see my reaction came from being afraid of

losing a clear definition of CS. If we include electricity in CS, and
environmentalism, and social justice, and physics/chemistry (ex.
as they relate to ICs), and this and that... what would be left that
would make CS CS? Then it dawned on me - Why am I defending
the status quo definition of CS? I realized I was just preferring the
status quo over change using slippery slope arguments to back up
my resistance.

The second motivation that made my resistance to considering
electricity as material was coming from a scarcity mentality. Hav-
ing taught informally and formally, I am unfortunately well aware
of the scarcity mentality instilled in teachers, like the meme that
says "math teachers on the first day of class: OK everyone we’re al-
ready way behind schedule we have to move fast". And this issue
is very real in my experience teaching and in my conversation with
my teacher friends. Although it’s true that teachers are scarce on
resources like time, that has nothing to do with whether electricity
is material or not.

The fear of changing what it means to do computer sci-
ence can lead to closing down important discussions about
what the discipline should be. There is a wealth of STS lit-
erature on how the boundaries of scientific disciplines are
socially constructed [43]. The question of CS’s boundaries
have important implications for broadening participation in
CS, as computing has shifted boundaries in the past to ex-
clude subfields that become more female-typed [4, 68, 83].
The hegemonic idea that computing itself does not need to
change in order to become more demographically diverse
has been implicated in why CS has had so little success in
increasing its diversity despite wide efforts [68, 79].

4.5 Instilled Reverence
Hardware, especially sophisticated devices and components
like ICs and CPUs are awe-inspiring marvels of technological
progress. Eric reflected on how he was presented ICs as
something deserving of reverence and went on to propagate
this view of hardware in his teaching:

Eric:
When I first learned about IC production through the YouTube

videos that introduced me to computer science, I was honestly very

confused. Makes sense, as the production of ICs are very compli-
cated, with the many phases of production, all involving complex
chemical concoctions and processes. Just the sheer complexity of
the production, and how these little ICs could replace refrigerator
sized computers really instilled a sense of reverence towards ICs
in me – this idea that ICs are complicated and hard to make, and
for that reason, they are just good.

[When I taught my workshop on computer hardware] I wanted
people to understand that ICs were just great because that’s how
I had learned about them. I watched YouTube videos that used
pretty animations and flashy graphics that really instilled a sense
of awe in me – just look at how complicated and advanced these are,
look at all the sophisticated chemical processes used to create these
tiny yet power things! What is there to criticize?

ICs are certainly incredible in what they are able to do.
However, this reverence towards ICs can result in elevating
ICs to a position where these electronic components are
untouchable by critique. This undermines and stalls efforts
to understand the full environmental cost of computing.

5 THEME 2: GREENNESS AS IMMATERIAL
This next theme we extracted from our narratives revolved
around how “greenness” in a computing context was socially
constructed in a way that was immaterial. “Green” comput-
ing generally refers to reducing the operational footprint of
computing — without considering the embodied costs.

Embodied cost is defined as the sum cost of all the green-
house gases released from cradle to site of use, including
material extraction, transportation, refinement, processing,
and assembly, whereas operational cost is the emissions re-
leased through use of the product [1]. There are additional
sources of emissions from computing, such as how computing
is frequently applied to induce demand for consumer goods,
prospecting fossil fuels [74], and from the processing of e-
Waste. For brevity, we have focused on the carbon emission
aspect of embodied cost, though there are other costs such
as pollution, that Silicon Elephants discusses in detail.

5.1 Greenwashing Through Focusing on
Operational Costs

A theme that emerged in our reflections is how greenness
moves CS away from materiality by focusing primarily on the
operation cost of computing, often excluding the embodied
cost all together. Indeed, writing this paper was Eric’s first
introduction to the very term “embedded cost”:

Eric:
Sadly, only through sharing our experiences and reflecting on

them with Elizabeth while writing this paper did I even learn what
embodied cost was. I’m a bit surprised and disappointed to know
that despite my consistent effort to think critically about comput-
ing, I didn’t encounter this really important part of “greenness”
in computing.

Eric’s experience points clearly to how “greenness” in
computing very frequently leaves out an important source
of carbon emissions in computing production: the embodied

LIMITS ’21, June 14–15, 2021 Mayhew and Patitsas

cost. And while Elizabeth learned about embodied costs in
graduate school through having a PhD advisor who specializes
in climate change and computing, even she found herself
falling prey to greenwashing in computing:
Elizabeth:

Last time I was searching for a web hosting company I totally
fell for the “green energy” thing and went with a company that
promised 100% green energy. So much of how greenness in com-
puting is framed is around energy consumption, without consider-
ing embedded emissions.

Although it is easy to focus on just the operational cost
of computing, Eric’s reflections in researching the embodied
cost of computers reveals how much greater the embodied
cost of electronics can be compared to their operational cost:

Eric:
Upon learning about the embodied cost of computing, I began

to notice how little the embodied cost of computing is discussed. I
recently read an article in the Guardian analyzing and criticizing
the environmental cost of bitcoin [3]. What struck me about this
article was it doesn’t mention at all the embodied cost of bitcoin
mining in their analysis of bitcoin’s absurd use of energy. When I
read this, I couldn’t help but feel like their assessment of the cost of
bitcoin was so lacking by not mentioning the embodied cost. I also
felt a sense of pride and empowerment in what I knew but also sad
this is barely talked about.

To assess exactly how important the embodied cost of comput-
ing is when considering the “greenness” of computing, I did some
research comparing the embodied and operational cost of devices.
This lead me to a Microsoft Developers’ blog post (of all places) that
succinctly and powerfully lays out just how much greater embod-
ied costs are compared to operational costs. The blog post I read
claims that 85 - 95% of emissions from devices like smart phones
come from the embodied cost of producing these devices in their
first year. The blog post goes on to say that you’d have to use a sur-
face laptop for about 12 years to match the embodied costs to the
operation cost [2].

This reinforces the idea that we cannot rely solely on reduc-
ing the use and energy consumption of computers to address
sustainability in CS. To move CS towards sustainability, ques-
tions must be ask about the unsustainable cost of producing
new devices.

5.2 Applying CS vs. Scrutinizing CS
The way greenness in computing is constructed also misguides
individuals concerned with climate change to focus on how CS
can be applied to move CS towards sustainability, instead of
scrutinizing the unsustainable practices of CS and computer
manufacturing.
Elizabeth:

Now I’m thinking about teaching [CS1 at McGill] last year. I
wanted to bring climate issues into the class. I created a [program-
ming] project on carbon footprints even though I knew they were
problematic. I even knew at the time that BP [British Petroleum]
had come up with them as a way of shifting responsibility [of fossil

fuel emission from BP to individuals]. But a personal carbon foot-
print calculator was just so much simpler to do compared to a coun-
try/corp’s calculator and much simpler than a climate model. And
it was also personal. Wanted assignments that connected to their
lives. I had them put in their own values and get results. Liked that
it would be related to lives. But did I do wrong?

Elizabeth, like many CS educators concerned with climate
change, found herself teaching how to apply computing con-
cepts toward sustainability - rather than teaching how to
scrutinize the existing approaches to computing.

Indeed, the literature on CS education for sustainability
predominantly focuses on how to apply computing concepts to
climate modelling and sustainable logistics [30, 35, 72]. This
tendency has also been an issue for the LIMITS community
[42]. As Elizabeth notes in her reflection, this advantage
is easier for a number of reasons: it fits with the existing
paradigm, it directly addresses curricular goals, and can
motivate students.

But as Elizabeth grappled working within the existing
paradigm, she found herself reinforcing its hegemonic norms:
an individualist (rather than structural) theory of change,
a techno-optimistic mindset, and a lack of challenging the
system of perpetual consumption that is at the root of the
climate crisis [8, 28, 47, 87].

Though Elizabeth did not note it in her reflection, one of
the sources of carbon that students calculated in the personal
footprint calculator was the embodied emissions of all the
new devices they had bought in a given year. It was her way
of “sneaking in” a way to teach embodied emissions.

The disconnect between sustainability and scrutinizing
CS shows up from the other side in Eric’s teaching. He
intentionally taught students to scrutinize CS with regard to
social justice — but until reflecting for this paper, he had
not included sustainability in that scrutiny:

Eric:
Something I hadn’t considered until talking to Elizabeth about

my teaching was how I often left out teaching about the environ-
ment as it related to CS. Interestingly though, I know I’m sure to
include social justice, inequality, and oppression in my teaching.

In particular, I think back to when I was teaching machine learn-
ing (ML) to other students as part of my workshops. During the
workshop, we talked about the ways machine learning is used in all
sorts of awful and oppressive ways, but I never talked about how
ML requires a ton of energy to train models, and more importantly,
how training ML models requires a lot of computer hardware like
fancy GPUs, which have significant embodied costs. So why didn’t
I include the environment?

At the time as a new learner of CS and sociology of CS, I saw a lot
of emphasis on how ML can reproduce and obscure discrimination.
But very rarely did I hear or read about the environmental cost of
computing. In the few times I did mention the environment when
teaching ML, it was often about how ML can help address climate
change. In particular, I mentioned during a lesson how advances
in computer hardware improves climate modelling simulations, al-
lowing simulations to account for more intense and spontaneous
natural disasters worsened by climate change. I know find it telling
that I would talk about how ML can help address climate change

Materiality Matters in Computing Education:
A Duoethnography of Two Digital Logic Educators LIMITS ’21, June 14–15, 2021

while ironically not mentioning how it may be exacerbating the
crisis.

I see now this idea that discrimination is “more related" to ML
than the environment just goes to show how deep I was in the hege-
mony of “greenness” in computing. The only reason I could enter-
tain or believe arguments that stated ML was “not very related" to
the environment are all the levels of abstraction and obfuscation
that go into the environmental costs of computing. I don’t have
to see the landfills piling up with ewaste, or the waste of produc-
ing hardware – in fact living where I do, I don’t even have to see
the wires that transport electricity in and outside my home, or the
dams that reshaped Quebec’s northern ecosystems and climate pat-
terns to provide me with electricity. Even the literature of the soci-
ology of CS I know, I rarely read about the environmental cost of
computing.

For Elizabeth it was interesting to see Eric saying that the
sociology of CS rarely talks about the environmental cost of
computing, because in her experience of the STS world this
is actually a prominent issue (e.g. [38, 45]).

5.3 A Culture of New Hardware All The Time
The immateriality of CS also manifests itself in the values
passed on to students in hardware courses. Elizabeth recalls
her hardware coursework focusing on valuing fast and fault-
tolerant hardware, rather than valuing long-lived hardware:

Elizabeth:
I’m now thinking about grad school, the course I took on stor-

age systems. [The prof]’s talking about how the bottleneck in speed
now is in memory access/reading, not processing. All our readings
are about making storage faster, more reliable. New ways of man-
aging storage. New hardware. New new new new.

At some point I ask what can be done to retrofit old systems so
that we don’t have to be always buying new hardware. People in
class seem awkward. Somebody was like oh you mean like JBOD
[“Just a bunch of Disks”] architecture? I had never heard the term
before. We were most of of the way through [the term] and at no
point in the formal curriculum did we ever learn about JBOD or
other techniques for making old machines still useful.

I will say this for the course - we did talk a ton about reliability.
Wasn’t just speed we cared about. My term project involved doing
requirements elicitation of sysadmins in large scientific labs (NASA
Goddard, CERN LHC) about what they wanted in storage systems
and what they were actually doing with existing storage systems. I
don’t remember it being surprising when in my interviews it arose
they used actual tape to store things long term, which makes me
think that [the prof] did spend time talking about how to keep in-
formation well-stored to avoid data rot and the like.

Even in this context where designers were taking a long-
view approach to hardware design — so that data would be
reliably accessed for decades in the future — the prevailing
ideology remained that we should always be producing more
hardware and continually switching to the newest hardware.

Indeed, Moore’s Law was frequently discussed as something
that storage systems researchers had a duty to uphold. And
in Elizabeth’s concurrent HCI coursework, she was presented

with techno-optimistic views of a ubiquitous computing fu-
ture, where having ICs in everything was The Utopian Dream.

6 THEME 3: THE GOD TRICK
The process of removing knowledge from the context it is
born from is what feminist epistemologist Donna Haraway
calls “the God Trick” [39]. She describes the God Trick as the
“myth” of “seeing everything from nowhere”, pushing against
the idea that any one person can hold “objective” knowledge.
Instead, she describes how all knowledge is situated and
limited by the people and context any knowledge originates
from, and we are better off embracing and acknowledging the
limitations of our knowledge rather than tricking oneself into
believing that they have a god view. Eric and Elizabeth’s
reflections revealed many instances of the God Trick in their
experience learning and teaching CS.

6.1 Rendering Natural: Appropriating Scientific
Language

Elizabeth’s reflections connect Haraway’s “God Trick” to the
use of “Laws” in CS when reading Silicon Elephants.

Elizabeth:
From Silicon Elephants:

the development of microchips not only depends on chem-
ical compounds to ensure the accurate conductivity of sili-
con; it further depends on chemical compounds in order to
increase conductivity. The terms of constant innovation and
doubling of circuit capacity, which are captured by Moore’s
Law, have a chemical foundation. (Detailed description of
the chemical processes used to refine silicon and the growth
of the industry to create it...)

This got me to thinking about Moore’s Law. Tedre paper talking
about how CS dresses up observations as “laws" that don’t actually
merit it. Moore’s Law rendered natural. Wondering if CS is just so
alienated from physical world that we invent natural sounding
things to try to make up for it.

The Tedre and Sutinen [82] paper mentioned above dis-
cusses the philosophy of computing, critiquing how CS has
framed itself as a “science” without using the appropriate epis-
temic practices [82]. The paper contains a detailed discussion
of how CS researchers have used the term “law” inconsistently
and never in line with the way it is used by natural scientists,
instead rounding up rules of thumb as “laws” [82]. This is
an example of the God Trick as speculative claims about the
nature and future of ICs uses scientific language (like “laws”)
to elevate these claims from speculation to scientific “fact”,
disconnected the claim from the situated and limited reality
from it originates. Perversely, by framing laws like Moore’s
law as natural, computer scientists may feel compelled to
make these laws true – regardless of the material or envi-
ronmental implications (which are already missing from the
purview of computing).

Similarly, Abbate has documented how computing dressed
itself up as “computer science” to become eligible for NSF

LIMITS ’21, June 14–15, 2021 Mayhew and Patitsas

funding in the US [54]. Appropriating scientific language
was part of the act [54, 82]. Yet over time it seems CS has
forgotten this was an act, rendering these “laws” as natural.

6.2 Lack of History
CS’s disconnection from its history was a common theme in
both of our experiences learning CS and provides another
example how CS knowledge is often removed from the situated
context from which it was created. This lack of historical
grounding serves to present computing concepts as a given
and objective by disconnecting these concepts from their
original context:
Elizabeth:

Talking to Eric about the Noyce history stuff [the physicist who
designed and popularized the intentionally unrecyclable silicon IC],
he knew so much more about it and it got me thinking about one
of my other pet peeves in computing education and that’s how we
present it without any history.

Like you learn physics or math or anthropology or sociology and
there’s a huge focus on what was done in the past and how things
have changed with time and how it’s a human enterprise and who
the big names are etc.

In computing we don’t really do that at all. We just serve the
state of knowledge on a platter to students as though it was
handed to us by God.

This serves to reinforce the rendering natural of computing - in-
stead of learning about the people behind it we learn only the con-
cepts as though that’s the way the world must be. Don’t get to see
how it’s all a social construction.

For Eric, it was through his STS education, not his CS
education, that he learned about CS history:
Eric:

It was actually through McPherson’s article US Operating Sys-
tems at Mid-Century that I was presented a comprehensive review of
UNIX philosophy! Prior to this reading I could only rattle off a few
catchy “tenets” like KISS (keep it simple, stupid). Kind of funny
that one of the most pivotal and important coding philosophies in
CS I learned reading STS literature, not through my courses. That
[STS] paper helped me see that these “principles” of coding com-
mon today were just a choice by some hippies in the 70s, not
some God-given set of commandments and rules.

Not only does this obscure how computing is a social
institution, this also makes it more difficult for students to
scrutinize its social processes. Here, the God Trick is employed
to render computing natural, by removing computing from
the societal context it is situated in.

When Elizabeth broke with the mold to discuss CS’s his-
tory in her teaching, she found that students found it en-
lightening and motivating — but she found herself feeling
uncomfortable when touching on CS’s ugly past:
Elizabeth:

[While teaching CS1 at McGill,] I talked about how climate mod-
els were one of the first main applications of civilian computing,
but also something the military cared about and had the students
brainstorm reasons climate models and weather forecasting are so

important. Students did great on this (e.g. planting crops, trans-
portation planning, emergency planning etc). I think this was the
only time that term I ever wound up touching on computing’s mil-
itary past though. I made it pretty clear to students that was a huge
thing in its history. But I felt uncomfortable while doing this. I’m
supposed to be trying to motivate these students to learn CS, and
help them feel at ease in a 800-student class, and here I am getting
onto topics of war and genocide? Maybe this is why we hide the
history from our students when we teach computing.

Avoiding discussing CS history also means educators can
avoid difficult topics, such as its militaristic origins and its
role in genocides (e.g. IBM’s role in the holocaust [14]). But
it also means that CS is presented as though it does not have
history, nor that it is created by people.

7 THEME 4: COMPUTING IS PEOPLE
This theme, true to feminist epistemology [39, 80], discusses
how social capital has so clearly shaped our experiences
teaching and learning computing. We’ve made a point of
keeping most names in our excerpted reflections to emphasize
the social nature of learning and teaching. Indeed, this very
paper was incited because one of Elizabeth’s other students
(Emma McKay) got us to read Silicon Elephants.

Every one of the experiences we reflected had people behind
them who had taught and/or supported us in improving our
teaching. Our raw reflections included over a dozen named
individuals who supported us in our experiences. It was
apparent to us when we coded our streams of consciousness
that our experiences were strongly influenced by people in
our lives. CS is not just pieces of knowledge: it is a community
of people who create and share knowledge.

7.1 Resistance to Changing Computing
But not all the people we noted in our reflections were sup-
portive. Consistent with other literature on how counter-
hegemonic practices in CS receive social pushback [17, 79],
we both recounted cases where we encountered resistance to
making computing more material and playful.

Elizabeth:
In both of the digital logic courses I’ve been involved in teach-

ing (CPSC 121 at UBC, CSC 258 at Toronto), TAs could be a major
source of pushback for making changes.

For example, when in CPSC 121 when we started having stu-
dents do more writing/communicating their knowledge, many
TAs pushed back because they felt marking students’ writing
was “too subjective”. These TAs were so steeped in a culture of
right/wrong based on input/output that grading little paragraphs
of student reflections was outside their comfort zones.

Finding qualified TAs for these courses was a perennial issue. So
many CS grad students just never had any experience with basic
breadboarding — which in hindsight was a sign that my education
at UBC was unusual!

One of the really important changes we made in 121 was for me
(and my successors) to have weekly meetings with the TAs where
the TAs actually did the labs. So many of our TAs were new to
actually doing the material that it proved vital to have them learn
it a week (or two) before they would be teaching it.

Materiality Matters in Computing Education:
A Duoethnography of Two Digital Logic Educators LIMITS ’21, June 14–15, 2021

At both schools, we tended to get a lot of TAs from electrical and
computer engineering as a result of not having enough qualified
CS TAs. Many of them were great. But unfortunately some of them
brought some of the worst parts of engineering culture with them
- very RTFM [Read The F***ing Manual], very curt with students,
heterosexist, rude to me and other women on the staff, etc. Those
ones tended to really push back on efforts to make labs more open-
ended, creative, and connected to societal applications.

And Eric recounted how the veneration of ICs led to push-
back from his peers when he questioned their use:

Eric:
Having learned about the cost of ICs and being more critical of

them can actually be kind of isolating. When I bring up the big cost
of IC production, I often am faced with very defensive responses
from people in CS, like “well you use computers, don’t you?” or
“what are we supposed to do now? It was only natural that ICs
are this way”, or “*How else*/can you think of a better way to
have computers as they are now?”. Other times people try to justify
themselves to me with responses like “Well I am a vegetarian, and
you eat meat so who’s doing worse for the planet?”. I get it this is
a big pill to swallow but gee, don’t shoot the messenger.

7.2 Student Support for Changing Computing
But while grad students – who have already been indoctri-
nated in the hegemonic norms in computing – pushed back on
being explicit about computing’s political dimensions, Eliz-
abeth found in her teaching that first-year undergraduates
really appreciated including it:

Elizabeth:
[During the fall 2020 term when I was teaching CS1, there was a

international climate strike that fell on one of my teaching days.]
I cancelled class the day of the actual climate strike. And the week
before the actual climate strike I did a class on the Friday [in solidar-
ity with Fridays for Future] about computing and the climate, to
motivate why I was cancelling class one week hence.

Anyway, I talked about how computing has a huge environmen-
tal cost from both the embodied and operational perspectives. I
wagged my finger at Bitcoin. And I also talked about how comput-
ing can help with climate crisis mitigation. Logistics optimization
and that stuff. Power grid management. Weather disaster planning.
And oh also we need to think about revamping all the cables and
stuff for sea rise. Btw students the internet is all cables.

I was terrified students would be angry that I made computing
“political” since this is a thing I’ve had pushback for in the past. But
the students were so into it. Many of them came by after class or
in subsequent classes to thank me for even acknowledging the
climate crisis which is something that’s clearly been weighing on
so many young people’s minds. In my teaching evals I was praised
for showing the ways that computing affects society.

Elizabeth’s experiences point to the importance of having
people who can teach these topics at formative stages in
CS education, before students have accepted the hegemonic
norms. It also gives us hope: computing can change.

8 THEME 5: ADVANTAGES OF LEARNING
WITH HARDWARE

Finally, an important theme that emerged in both of our
reflections was that there were pedagogical benefits to learn-
ing with hardware: it was fun and hence motivating, but
also cognitively made the abstract ideas tangible and more
accessible.

8.1 Making Learning Concrete
Both of us wrote in our reflections how working with physi-
cal hardware helps students learn the abstract concepts in
computing.

Eric:
What [Silicon Elephants] made me realize is that teaching hard-

ware through a very material approach (e.g. using and playing
with electronic components in the classroom) begins to address two
problems I see in the dominant forms of CS education: 1) The man-
ufacturing process of hardware is obscured to students and 2) CS
concepts are often taught in very abstract ways, making it hard
for students (myself included) to grasp these concepts in the first
place.

I remember having a very profound moment when I understood
how basic logic gates could create a simple memory latch or loop.
That blew me away, I understood the connection between the ab-
stract logic gates and the computer I use all the time!

Similarly, when Elizabeth was a student, programming
physical microprocessors was how she learned pointers:

Elizabeth:
[My friend who was two years ahead of me in the CS+physics

programme] told me to take PHYS 319 [microprocessor lab course]
when I took CPSC 313 [operating systems]. The two courses went
together really well. CPSC 313 [operating systems] was totally ab-
stract and we only talked about transistors in abstract terms. In
PHYS 319 [microprocessors] we actually used transistors in circuits.
I don’t think I would have understood much in CPSC 313 without
PHYS 319 actually making it real for me.

The prereq to CPSC 313 had been CPSC 213 [computer systems]
which I felt I’d done poorly in. 213 was when we were introduced
to C and Assembly languages and honestly I didn’t understand
pointers even by the end. I just put *s and &s randomly in the hopes
that variables would work, and then brute force the combination
when debugging. I lacked a real understanding of how memory
was being managed.

Pointers didn’t actually make sense to me until I was taught to
program an HC12 microprocessor for PHYS 319. 319 was exciting.
Not only were things from CS class ACTUALLY making sense for
the first time, but I was actually using the knowledge in physical,
tangible, cool ways.

Looking back on it the chance to implement things in a physical
place was really important for my learning. CS classes just assumed
that a mathematical description was sufficient for learning and boy
that was insufficient.

That said, Elizabeth did actually get some hardware ex-
posure through one of her undergraduate CS courses, but
found the exposure insufficient to be very useful:

LIMITS ’21, June 14–15, 2021 Mayhew and Patitsas

Elizabeth:
My intro to digital logic came as a first-year undergrad, in CPSC

121 [Models of Computation]. I had to buy a breadboard kit and
use it in labs. The course was weird. We had abstract math logic in
lecture, and then digital logic in the labs, and there wasn’t much
of a connection between the two when I took it. I was so excited at
the start of term for the circuitry and was so disappointed by how
it actually played out. The breadboard kit, called “The Magic Box”,
was only used in four of the (10? 12?) weekly labs. I wound up
resenting purchasing it because it cost like a hundred dollars and
we barely used it. When we did use it, it was boring, doing things
like plugging in an AND gate and “checking” that it matched its
truth table.

Elizabeth later went on to become the lab coordinator
for the course — which involved rewriting the labs — and
co-writing experience reports about efforts to rethink the
course. In [66], one of her co-authors wrote (emphasis ours):

Roughly four to six of the approximately nine labs
in the term involve actual hardware, with students
creating their own beginner circuitry using an in-house-
created kit called “The Magic Box.” Prior to the spring
of 2009, students had to purchase and manage their
own kits (at a cost of $80 CAD per pair of students).
The intention was that ownership would give students
interest and opportunity to experiment with them. Un-
fortunately, anecdotal and open ended survey feedback
both suggested that students instead saw the boxes
as a frustrating and unnecessary expense.

The idea that simply giving students a breadboard kit with-
out providing instruction or scaffolding on how it could be
used would magically foster student interest and engagement
is something Elizabeth looks at now and names as construc-
tionism run amok. For a description of constructionism and
its hegemonic role in reinforcing individualist, masculinist
approaches to CS education, see [5].

We include this as a cautionary tale, exemplifying the idea
that “add hardware and stir” will not foster student learning
on its own — the hardware needs to be explicitly taught and
connected to the relevant computational concepts.

8.2 Hardware is just fun
A common theme and source of excitement for both of us
was how fun playing with ICs can be (when scaffolded ap-
propriately). Both of us talked often and fondly of getting
LEDs to light up using simple circuitry and ICs. Something
about the simple satisfaction of getting LEDs to light up with
intention made learning about ICs and computer hardware
very enjoyable for both of us.

Eric:
I remember being amazed while watching the YouTube crash

course videos on circuitry and memory. Something about seeing
how a circuit can be configured in such a way that stores mem-
ory was so fascinating and exciting to me. The videos used abstract
symbols for logic gates to represent the memory latch, and when

I learned that it was relatively cheap to get the hardware compo-
nents that corresponded to these logic symbols, I really wanted to
create the memory latch myself, before my very eyes.

I will be honest, it was a lot more difficult than the videos made it
seem – I guess it’s easier when you’re using illustrations opposed
to “programming” the real thing. It was hard using the resistors
and transistors, and I had struggled with a lot of bugs. After suc-
cessfully implementing the memory latch using transistors, I tried
with ICs. This was also very challenging: the documentation for
these ICs were hard to find and hard to parse, requiring error prone
work like matching the pins of the ICs and to the diagrams. How-
ever, I wasn’t deterred, indeed that satisfaction of getting the LED
to light up using transistors reminded me the work is worth it. I
remember finally constructing a memory latch and jumping with
joy, excitedly showing off my messy breadboard of jumper cables
and other discrete components to my friends.

And when we each started teaching digital logic, we both
independently brought that emphasis on playful, material
learning into our teaching.
Elizabeth:

In the early days of being lab coordinator for 121 [Models of
Computation] I often thought of my work as “making the labs not
suck”. The original labs were very procedural: do X then do Y. And
they were primarily on a digital logic simulator called tkgate rather
than using the Magic Box [breadboarding kit]. One of my jobs as
lab coordinator was to rewrite the labs (with input from the course
instructor).

One of the early innovations came from Steve [Wolfman, the
course instructor] to change an activity from “plug in a [physical]
gate and record its truth table” to us covering the gate’s label with
white-out and then tasking students with identifying the “mystery
chip”. Steve set a precedent for me that I could bring more play
and creativity into the labs. I started adding activities where stu-
dents could create their own artistic creations with the LEDs and
the clockwave generator, and making circuits that could do things,
such as hardware-level encryption or error-correction. I had fun cre-
ating an activity where students would come up with their own
hardware-level pseudorandom number generator.

Making the labs fun and creative led to the students engaging
with the labs WAY MORE but also helped engage the TAs in the
labs. A lot of the time the old labs could be pretty boring as a TA
and it’s hard to get students engaged when you yourself find it
dull. Having the creative space and instructor support over several
terms to create and refine new lab activities that were actually fun
and practical was a really special time for me.

The successes of these new labs that Elizabeth worked on
translated into two experience reports documenting just how
much of an improvement the new labs were [66, 67]. And
Eric also found that giving students a chance to play with
circuits was also a big hit:
Eric:

In the [24 session] workshop I created with my boyfriend, we de-
liberately used ICs throughout the hardware module of our work-
shop. We had activities of translating abstract logic diagrams on
breadboards. I remember while trying to refocus the workshop to
turn to the next activity, I had a hard time getting participants’ at-
tention away from their breadboards. It seems like they really en-
joyed playing around with the circuits! Participants often went

Materiality Matters in Computing Education:
A Duoethnography of Two Digital Logic Educators LIMITS ’21, June 14–15, 2021

above and beyond the subject material for the lesson and imple-
mented more complicated circuits on their own, or stayed after our
scheduled time to continue toying around.

The fun participants had using breadboards was also reflected in
their feedback for the workshop. On the first ever iteration of our
workshop, the feedback had several mentions of the breadboards
and just how enjoyable they were to play with. One participant
wrote in their feedback: “Everything was awesome seriously. I par-
tiularly [sic] liked playing around with the breadboard to build
circuits such that we can relate how computers work to physical
tangible things.” A different participant wrote: “The hands on com-
puter hardware section, and how binary memory works [was my
favourite part]”. In the 11 response we got from our first iteration
of the workshop, the majority explicitly mention enjoying using the
breadboards.

Both of us noted the difficulty of working with hardware
but that the satisfaction of getting it working made it feel “all
worth it”. Indeed, a great deal of research supports the idea
that play helps learners learn [25, 26, 73, 86]. And while this
is well-appreciated in elementary education, it is frequently
neglected in university pedagogy. Tactility is an important
modality for teaching [58], and neglecting it cuts off a useful
medium for learning. Removing the tactile element also serves
to disconnect the concepts from their material origins [52].

However, similar to the cautionary tale in subsection 8.1,
it must be emphasized that just using ICs when learning
digital logic is not enough to bring student’s awareness to
the environmental cost of ICs. Without proper guidance
and instruction, the compact qualities of ICs may suggest
to students that, given their size, ICs have a relative small
environmental impact. Indeed, it was the very gory and
uncomfortable truths presented in Silicon Elephants about
the costs of ICs that inspired this very paper. Instructors
looking to teach ICs in a way that includes this environmental
cost must make teaching it a priority.

9 CONCLUSIONS
Coming to grips with the harrowing reality that is the waste
and pollution in the production of ICs led us to see a larger
pattern of obscuring the troubling relationship between com-
puting and its environmental consequences. Our findings are
consistent with similar observations in STS literature which
illustrate how the dominant framing of CS sees computing
as separate from the “social/political” world. In this framing,
CS is purely “technical”, conveniently labelling the environ-
mental, social, and political consequences of computing as
“not computer science” [10, 17, 24, 48, 49].

Through reflecting on our experiences we found common
themes concerned with the immateriality of CS. We both
experienced the ways in which computing’s consequences in
the world are positioned as separate from CS. Similarly, we
both learned CS in a way that was removed from its historical
context, distancing CS from its humanity. Our reflections
also revealed how “greenness” is constructed in computing
such that the other costs of computing are obscured. Finally,
we share how teaching and learning with concrete, tactile
components can help build richer student understanding. We

found our experiences, though different, were in line with
Breslin’s ethnographic work of CS education, and together
speak to how the social and environmental harms of CS stem
from ideological roots in the discipline.

Having CS education promote values of sustainability and
social justice means we must do more as educators than
just add sustainability-themed assignments. If we do not
address and challenge the hegemonic norms of computing
that contribute to its environmental impacts, our students are
destined to fail as they search for purely technical solutions
to social problems like climate change. Fortunately, educators
are key stakeholders in establishing the norms of computing.
Given the right resources, professional development, and
reflection, educators have the potential to shift the norms of
CS to include sustainability and materiality at its core.

So how do we disrupt the hegemonic immateriality in CS?
One way is to connect CS to its materiality. For example,
bringing physical hardware into the digital logic classroom
has many benefits for educators: ICs are fun and provide
cognitive advantages when learning CS. Introducing ICs and
other physical hardware into the classroom also presents
opportunities to discuss and critique the material dimensions
of computing. Seeing and touching ICs invites questions
that examine the origin and creation of ICs, like where do
these objects come from? What goes into making them?
These questions segue well into larger (ideally student-led)
inquiries about the very social and environmental dimensions
of CS that are often lacking when considering the inputs and
outputs of computational devices. These inquiries can work
to directly challenge the pervasive attitudes that frames CS
as magical and begin vital conversations about the partiality
of CS. However, it should be noted this is one potential
intervention that must be part of a larger cultural shift that
needs to happen.

Even for educators who are dedicated to bringing envi-
ronmentalism and social justice to our teaching, our paper
demonstrates how there are many pitfalls in learning how to
teach CS within the limits of what our ecosystems and social
systems can support. This highlights the need for teacher
education, education research, and community support for
those who want to teach CS in counter-hegemonic ways.

ACKNOWLEDGEMENTS
We thank Aditya Bhargava, Christoph Becker, Alan Borning, Sam
Breslin, Jay Chen, Steve Easterbrook, Steve Engels, Anna Ma, Emma
McKay, Peter McMahan, Jacob Errington, Andrew Petersen, Barath
Raghavan, David Rolnick, and Steve Wolfman for all of their feedback
on this paper. We also thank everybody in the SHAPE of Computing
Reading Group who participated in the discussion that sparked this
paper. This research was funded in part by the Social Sciences and
Humanities Research Council of Canada.

REFERENCES
[1] 2020. https://circularecology.com/embodied-carbon.html
[2] 2020. Examining the Carbon Footprint of Devices. https:

//devblogs.microsoft.com/sustainable-software/examining-the-
carbon-footprint-of-devices/

[3] 2021. Electricity needed to mine bitcoin is more than used by ’en-
tire countries’. https://www.theguardian.com/technology/2021/
feb/27/bitcoin-mining-electricity-use-environmental-impact

https://circularecology.com/embodied-carbon.html
https://devblogs.microsoft.com/sustainable-software/examining-the-carbon-footprint-of-devices/
https://devblogs.microsoft.com/sustainable-software/examining-the-carbon-footprint-of-devices/
https://devblogs.microsoft.com/sustainable-software/examining-the-carbon-footprint-of-devices/
https://www.theguardian.com/technology/2021/feb/27/bitcoin-mining-electricity-use-environmental-impact
https://www.theguardian.com/technology/2021/feb/27/bitcoin-mining-electricity-use-environmental-impact

LIMITS ’21, June 14–15, 2021 Mayhew and Patitsas

[4] Janet Abbate. 2012. Recoding gender: Women’s changing par-
ticipation in computing. Mit Press.

[5] Morgan G Ames. 2018. Hackers, computers, and cooperation: A
critical history of Logo and constructionist learning. Proceedings
of the ACM on Human-Computer Interaction 2, CSCW (2018),
1–19.

[6] Sareeta Amrute. 2016. Encoding race, encoding class: Indian IT
workers in Berlin. Duke University Press.

[7] Mike Anusas and Tim Ingold. 2013. Designing environmental
relations: From opacity to textility. Design Issues 29, 4 (2013),
58–69.

[8] Nicole Aschoff. 2015. The new prophets of capital. Verso Trade.
[9] Mehdi Azadi, Stephen A Northey, Saleem H Ali, and Mansour

Edraki. 2020. Transparency on greenhouse gas emissions from
mining to enable climate change mitigation. Nature Geoscience
13, 2 (2020), 100–104.

[10] David Adam Banks and Michael Lachney. 2017. Engineered
violence: Confronting the neutrality problem and violence in engi-
neering. International Journal of Engineering, Social Justice,
and Peace 5 (2017), 1–12.

[11] Wolmet Barendregt, Christoph Becker, EunJeong Cheon, Andrew
Clement, Pedro Reynolds-Cuéllar, Douglas Schuler, and Lucy
Suchman. 2021. Defund Big Tech, Refund Community. Tech
Otherwise (2021).

[12] Caleb Behn and Karen Bakker. 2019. Rendering Technical, Render-
ing Sacred: The Politics of Hydroelectric Development on British
Columbia’s Saaghii Naachii/Peace River. Global Environmental
Politics 19, 3 (2019), 98–119.

[13] Ruha Benjamin. 2019. Race after technology: Abolitionist tools
for the new jim code. John Wiley & Sons.

[14] Edwin Black. 2012. IBM and the Holocaust: The Strategic Al-
liance Between Nazi Germany and America’s Most Powerful
Corporation-Expanded Edition. Dialog press.

[15] Alan Borning, Batya Friedman, and Deric Gruen. 2018. What
pushes back from considering materiality in IT?. In Proceedings
of the 2018 Workshop on Computing within Limits. 1–6.

[16] Alan Borning, Batya Friedman, and Nick Logler. 2020.
The’invisible’materiality of information technology. Commun.
ACM 63, 6 (2020), 57–64.

[17] Samantha Breslin. 2018. The making of computer scientists:
rendering technical knowledge, gender, and entrepreneurialism
in Singapore. Ph.D. Dissertation. Memorial University of New-
foundland.

[18] Yu Cai. 2010. Integrating Sustainability into Undergraduate
Computing Education. In Proceedings of the 41st ACM Tech-
nical Symposium on Computer Science Education (Milwaukee,
Wisconsin, USA) (SIGCSE ’10). Association for Computing Ma-
chinery, New York, NY, USA, 524–528. https://doi.org/10.1145/
1734263.1734439

[19] AL Carew and CA Mitchell. 2008. Teaching sustainability as a con-
tested concept: capitalizing on variation in engineering educators’
conceptions of environmental, social and economic sustainability.
Journal of cleaner production 16, 1 (2008), 105–115.

[20] Karin Knorr Cetina. 2009. Epistemic cultures: How the sciences
make knowledge. Harvard University Press.

[21] Peter Checkland. 2000. Soft systems methodology: a thirty year
retrospective. Systems research and behavioral science 17, S1
(2000), S11–S58.

[22] Marika Cifor and Patricia Garcia. 2019. Inscribing Gender: A
Duoethnographic Examination of Gendered Values and Practices
in Fitness Tracker Design. In Proceedings of the 52nd Hawaii
International Conference on System Sciences.

[23] Marika Cifor and Patricia Garcia. 2020. Gendered by design: A
duoethnographic study of personal fitness tracking systems. ACM
Transactions on Social Computing 2, 4 (2020), 1–22.

[24] Tony Clear. 2004. Critical enquiry in computer science education.
Computer science education research (2004), 101–125.

[25] Guy Cook. 2000. Language play, language learning. Oxford
University Press.

[26] Kathleen Coolahan, John Fantuzzo, Julia Mendez, and Paul Mc-
Dermott. 2000. Preschool peer interactions and readiness to learn:
Relationships between classroom peer play and learning behaviors
and conduct. Journal of Educational Psychology 92, 3 (2000),
458.

[27] Anu Corin et al. 2019. Inside out. Exploring invisible spaces of
material flow through a critical design process. (2019).

[28] Eileen Crist. 2007. Beyond the climate crisis: a critique of climate
change discourse. Telos 141, Winter (2007), 29–55.

[29] Greg Dimitriadis and George Kamberelis. 2006. Theory for Edu-
cation: Adapted from Theory for Religious Studies, by William
E. Deal and Timothy K. Beal. Routledge.

[30] Ali Erkan, Tom Pfaff, Jason Hamilton, and Michael Rogers. 2012.
Sustainability themed problem solving in data structures and
algorithms. In Proceedings of the 43rd ACM technical symposium
on Computer Science Education. 9–14.

[31] Casey Fiesler, Natalie Garrett, and Nathan Beard. 2020. What
Do We Teach When We Teach Tech Ethics? A Syllabi Analysis.
In Symposium on Computer Science Education (SIGCSE’20).

[32] Jennifer Gabrys. 2013. Digital rubbish: A natural history of
electronics. University of Michigan Press.

[33] Patricia Garcia and Marika Cifor. 2019. Expanding our reflexive
toolbox: Collaborative possibilities for examining socio-technical
systems using duoethnography. Proceedings of the ACM on
Human-Computer Interaction 3, CSCW (2019), 1–23.

[34] Roberta Garner and Black Hawk Hancock. 2014. Social theory:
continuity and confrontation: A reader. Vol. 1. University of
Toronto Press.

[35] Michael Goldweber, John Barr, Tony Clear, Renzo Davoli, Samuel
Mann, Elizabeth Patitsas, and Scott Portnoff. 2012. A framework
for enhancing the social good in computing aducation: a values
approach. In Proceedings of the final reports on Innovation
and Technology in Computer Science Education 2012 Working
Groups (Haifa, Israel) (ITiCSE-WGR ’12). ACM, New York, NY,
USA, 16–38. https://doi.org/10.1145/2426636.2426639

[36] Horat,iu Halmaghi. 2019. Learning computer science was hard.
Unlearning computer science is harder. Master’s thesis. McGill
University.

[37] Margaret Hamilton. 2015. Learning and Teaching Computing
Sustainability. In Proceedings of the 2015 ACM Conference on
Innovation and Technology in Computer Science Education
(Vilnius, Lithuania) (ITiCSE ’15). Association for Computing
Machinery, New York, NY, USA, 338. https://doi.org/10.1145/
2729094.2754850

[38] Aimi Hamraie and Kelly Fritsch. 2019. Crip technoscience mani-
festo. Catalyst: Feminism, Theory, Technoscience 5, 1 (2019),
1–33.

[39] Donna Haraway. 1988. Situated knowledges: The science question
in feminism and the privilege of partial perspective. Feminist
studies 14, 3 (1988), 575–599.

[40] Sandra Harding. 2016. Whose science? Whose knowledge? Cor-
nell University Press.

[41] Megan Hofmann, Devva Kasnitz, Jennifer Mankoff, and Cyn-
thia L Bennett. 2020. Living Disability Theory: Reflections on
Access, Research, and Design. In The 22nd International ACM
SIGACCESS Conference on Computers and Accessibility. 1–13.

[42] Michelle Kaczmarek, Saguna Shankar, Rodrigo dos Santos, Eric M.
Meyers, and Lisa P. Nathan. 2020. Pushing LIMITS: Envisioning
beyond the Artifact. In Proceedings of the 7th International
Conference on ICT for Sustainability (Bristol, United Kingdom)
(ICT4S2020). Association for Computing Machinery, New York,
NY, USA, 255–266. https://doi.org/10.1145/3401335.3401367

[43] Michèle Lamont and Virág Molnár. 2002. The study of boundaries
in the social sciences. Annual review of sociology 28, 1 (2002),
167–195.

[44] Tania Murray Li. 2007. The will to improve: Governmentality,
development, and the practice of politics. duke university Press.

[45] Max Liboiron. 2021. Pollution is colonialism. Duke University
Press.

[46] Heather Lovell and Donald MacKenzie. 2011. Accounting for car-
bon: the role of accounting professional organisations in governing
climate change. Antipode 43, 3 (2011), 704–730.

[47] Fred Magdoff and John Bellamy Foster. 2010. What every envi-
ronmentalist needs to know about capitalism. Monthly Review
61, 10 (2010), 1–30.

[48] James W Malazita and Korryn Resetar. 2019. Infrastructures
of abstraction: how computer science education produces anti-
political subjects. Digital Creativity (2019), 1–13.

[49] Samuel Mann, Mike Lopez, Dobrila Lopez, and Nell Smith. 2015.
Educating for ICT4S: Unpacking sustainability and ethics of ICT
student intakes. In 29th International Conference on Informat-
ics for Environmental Protection and the 3rd International
Conference ICT for Sustainability (EnviroInfo & ICT4S 2015).
Atlantis Press, 229–241.

[50] Samuel Mann, Logan Muller, Janet Davis, Claudia Roda, and
Alison Young. 2010. Computing and Sustainability: Evaluating
Resources for Educators. SIGCSE Bull. 41, 4 (Jan. 2010), 144–155.

https://doi.org/10.1145/1734263.1734439
https://doi.org/10.1145/1734263.1734439
https://doi.org/10.1145/2426636.2426639
https://doi.org/10.1145/2729094.2754850
https://doi.org/10.1145/2729094.2754850
https://doi.org/10.1145/3401335.3401367

Materiality Matters in Computing Education:
A Duoethnography of Two Digital Logic Educators LIMITS ’21, June 14–15, 2021

https://doi.org/10.1145/1709424.1709459
[51] Samuel Mann, Lesley Smith, and Logan Muller. 2008. Computing

Education for Sustainability. SIGCSE Bull. 40, 4 (Nov. 2008),
183–193. https://doi.org/10.1145/1473195.1473241

[52] Emma McKay. 2021. Dis-origined Materials: The Role and Invis-
ibilization of Extraction in Technoscience. https://doi.org/10.
31235/osf.io/8hxj7

[53] Phil McManus. 1996. Contested terrains: Politics, stories and
discourses of sustainability. Environmental politics 5, 1 (1996),
48–73.

[54] Thomas J Misa. 2016. Communities of Computing: Computer
Science and society in the ACM. Morgan & Claypool.

[55] Lisa P Nathan, Michelle Kaczmarek, Maggie Castor, Shannon
Cheng, and Raquel Mann. 2017. Good for Whom? Unsettling
Research Practice. In Proceedings of the 8th International Con-
ference on Communities and Technologies. 290–297.

[56] Joe Norris. 2017. Duoethnography. In The Sage encyclopedia of
qualitative research methods, Lisa M Given (Ed.). Sage publica-
tions.

[57] J. Norris, R.D. Sawyer, and D. Lund. 2016. Duoethnogra-
phy: Dialogic Methods for Social, Health, and Educational Re-
search. Taylor & Francis. https://books.google.ca/books?id=
YawYDQAAQBAJ

[58] National Academies of Sciences Engineering and Medicine. 2018.
How people learn II: Learners, contexts, and cultures. National
Academies Press.

[59] Jennifer C Park and Sara ED Wilmes. 2019. A critical co/au-
toethnographic exploration of self: Becoming science education
researchers in diverse cultural and linguistic landscapes. In Criti-
cal voices in science education research. Springer, 141–155.

[60] Shobita Parthasarathy and Jack Stilgoe. 2019. Episode 3: Consid-
ering Ethical Responsibility in Science and Technology ft. Nicholas
Carr. The Received Wisdom.

[61] Shobita Parthasarathy and Jack Stilgoe. 2021. Equity in Science
and Technology Policy and the Promise of Vaccines Ft.Maya
Goldenberg.

[62] Elizabeth Patitsas. 2012. Teaching labs on pseudorandom num-
ber generation. In Proceedings of the seventeenth ACM Annual
Conference on Innovation and Technology in Computer Science
Education (Haifa, Israel) (ITiCSE ’12). ACM, New York, NY,
USA, 376–376. https://doi.org/10.1145/2325296.2325392

[63] Elizabeth Patitsas. 2015. A Numpy-First Approach to Teaching
CS1 to Natural Science Students. In Proceedings of the 2015
ACM Conference on Innovation and Technology in Computer
Science Education. ACM, 333–333.

[64] Elizabeth Patitsas, Michelle Craig, and Steve Easterbrook. 2013.
Comparing and contrasting different algorithms leads to increased
student learning. In Proceedings of the ninth annual interna-
tional ACM conference on International computing education
research (San Diego, San California, USA) (ICER ’13). ACM,
New York, NY, USA, 145–152. https://doi.org/10.1145/2493394.
2493409

[65] Elizabeth Patitsas, Vanessa Kroeker, Rachel Jordan, and Kimberly
Voll. 2012. Teaching CPU architecture: a new way to provide
effective scaffolding. In Proceedings of the twelfth Koli Calling
International Conference on Computing Education Research
(Koli, Finland) (Koli Calling ’12). ACM, New York, NY, USA,
149–150. https://doi.org/10.1145/2401796.2401820

[66] Elizabeth Patitsas, Kimberly Voll, Mark Crowley, and Steven Wolf-
man. 2010. Circuits and logic in the lab: Toward a coherent picture
of computation. In Proceedings of the fifteenth Western Cana-
dian Conference on Computing Education (Kelowna, British
Columbia, Canada) (WCCCE ’10). ACM, New York, NY, USA,
Article 7, 5 pages. https://doi.org/10.1145/1806512.1806523

[67] Elizabeth Patitsas and Steven Wolfman. 2012. Effective closed
labs in early CS courses: lessons from eight terms of action
research. In Proceedings of the 43rd ACM Technical Sympo-
sium on Computer Science Education (Raleigh, North Car-
olina, USA) (SIGCSE ’12). ACM, New York, NY, USA, 637–642.
https://doi.org/10.1145/2157136.2157318

[68] Elizabeth Ann Patitsas. 2019. Explaining Gendered Participation
in Computer Science Education. Ph.D. Dissertation.

[69] Elizabeth Patitsas [90%] and Daniel Levy. 2013. Dr. Horrible’s
Fork Bomb: A Lab for Teaching Security in CS2. In Proceedings
of the eighteenth ACM Annual Conference on Innovation and
Technology in Computer Science Education (Canterbury, UK)
(ITiCSE ’13). ACM, New York, NY, USA.

[70] Devin N Perkins, Marie-Noel Brune Drisse, Tapiwa Nxele, and
Peter D Sly. 2014. E-waste: a global hazard. Annals of global
health 80, 4 (2014), 286–295.

[71] Denise F Polit and Cheryl Tatano Beck. 2010. Generalization
in quantitative and qualitative research: Myths and strategies.
International journal of nursing studies 47, 11 (2010), 1451–
1458.

[72] Ian Pollock, Bedour Alshaigy, Andrew Bradley, Birgit R Krogstie,
Viraj Kumar, Linda Ott, Anne-Kathrin Peters, Charles Riedesel,
and Charles Wallace. 2019. 5 Degrees of Separation: Computer
Science Education in the Age of the Anthropocene. In Proceedings
of the Working Group Reports on Innovation and Technology
in Computer Science Education. 1–25.

[73] Ingrid Pramling Samuelsson and Eva Johansson. 2006. Play and
learning—inseparable dimensions in preschool practice. Early
child development and care 176, 1 (2006), 47–65.

[74] David Rolnick. 2021. Private Communication.
[75] Heath Rose and Anuchaya Montakantiwong. 2018. A tale of

two teachers: A duoethnography of the realistic and idealistic
successes and failures of teaching English as an international
language. RELC Journal 49, 1 (2018), 88–101.

[76] Edward Said. 2020. Orientalism. Routledge.
[77] Jeffrey A. Stone. 2016. Integrating Sustainability Concepts into

Introductory Programming Courses (Abstract Only). In Proceed-
ings of the 47th ACM Technical Symposium on Computing
Science Education (Memphis, Tennessee, USA) (SIGCSE ’16).
Association for Computing Machinery, New York, NY, USA, 685.
https://doi.org/10.1145/2839509.2850527

[78] Jeffrey A. Stone. 2019. Assessing the Impact of Sustainability-
Themed Programming Assignments. In Proceedings of the 50th
ACM Technical Symposium on Computer Science Education
(Minneapolis, MN, USA) (SIGCSE ’19). Association for Comput-
ing Machinery, New York, NY, USA, 1283. https://doi.org/10.
1145/3287324.3293764

[79] Susan Michele Sturman. 2009. ‘Women in Computing’ as Prob-
lematic: Gender, Ethics and Identity in University Computer
Science Education. Ph.D. Dissertation. University of Toronto.

[80] Lucy Suchman. 1993. Working relations of technology production
and use. Computer supported cooperative work 2, 1-2 (1993),
21–39.

[81] Monica Taylor, Emily J Klein, and Linda Abrams. 2014. Tensions
of reimagining our roles as teacher educators in a third space:
Revisiting a co/autoethnography through a faculty lens. Studying
Teacher Education 10, 1 (2014), 3–19.

[82] Matti Tedre and Erkki Sutinen. 2008. Three traditions of comput-
ing: What educators should know. Computer Science Education
18, 3 (2008), 153–170.

[83] K Tijdens et al. 1997. Gender segregation in the IT occupations.
Grundy, AF Women, Work, and Computerization. Berlin, Hei-
delberg, New York: Springer (1997), 449–462.

[84] Giovanni Vincenti and Wolf T. Pecher. 2020. Merging Sustainabil-
ity and Technology in the Classroom: An Experience Report. In
Proceedings of the 51st ACM Technical Symposium on Computer
Science Education (Portland, OR, USA) (SIGCSE ’20). Associ-
ation for Computing Machinery, New York, NY, USA, 448–453.
https://doi.org/10.1145/3328778.3366899

[85] Sara Vogel. 2019. Power, Discourse, and Knowledge in Computer
Science Education Advocacy: An Analysis of Popular Code. org
Videos. (2019).

[86] Lev S Vygotsky. 1967. Play and its role in the mental development
of the child. Soviet psychology 5, 3 (1967), 6–18.

[87] Ronald Wright. 2004. A short history of progress. House of
Anansi.

[88] Anon Ymous, Katta Spiel, Os Keyes, Rua M Williams, Judith
Good, Eva Hornecker, and Cynthia L Bennett. 2020. " I am just
terrified of my future"—Epistemic Violence in Disability Related
Technology Research. In Extended Abstracts of the 2020 CHI
Conference on Human Factors in Computing Systems. 1–16.

https://doi.org/10.1145/1709424.1709459
https://doi.org/10.1145/1473195.1473241
https://doi.org/10.31235/osf.io/8hxj7
https://doi.org/10.31235/osf.io/8hxj7
https://books.google.ca/books?id=YawYDQAAQBAJ
https://books.google.ca/books?id=YawYDQAAQBAJ
https://doi.org/10.1145/2325296.2325392
https://doi.org/10.1145/2493394.2493409
https://doi.org/10.1145/2493394.2493409
https://doi.org/10.1145/2401796.2401820
https://doi.org/10.1145/1806512.1806523
https://doi.org/10.1145/2157136.2157318
https://doi.org/10.1145/2839509.2850527
https://doi.org/10.1145/3287324.3293764
https://doi.org/10.1145/3287324.3293764
https://doi.org/10.1145/3328778.3366899

	Abstract
	1 Introduction
	2 Methods
	2.1 What is a duoethnography?
	2.2 What was our process?
	2.3 Theoretical basis
	2.4 Who are we?
	2.5 A Word on Style

	3 Background: Silicon Elephants
	4 Theme 1: Hegemonic Immateriality
	4.1 Rendering Technical and Externalization
	4.2 Rendering Magical: Coding as ``Wizardry''
	4.3 Rejecting the Partiality of Knowledge
	4.4 The Obscuring Effects of Immateriality
	4.5 Instilled Reverence

	5 Theme 2: Greenness as Immaterial
	5.1 Greenwashing Through Focusing on Operational Costs
	5.2 Applying CS vs. Scrutinizing CS
	5.3 A Culture of New Hardware All The Time

	6 Theme 3: The God Trick
	6.1 Rendering Natural: Appropriating Scientific Language
	6.2 Lack of History

	7 Theme 4: Computing is People
	7.1 Resistance to Changing Computing
	7.2 Student Support for Changing Computing

	8 Theme 5: Advantages of Learning With Hardware
	8.1 Making Learning Concrete
	8.2 Hardware is just fun

	9 Conclusions
	References

