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ABSTRACT
Recent projections by the United Nations show that the food pro-
duction needs to double by 2050 in order to meet the nutrition
demand of the world’s growing population. A key enabler of this
growth are smallholder family farms, that form the backbone of
agricultural (AG) production worldwide. To meet this increasing
demand, smallholder farms need to implement critical advances in
task management and coordination, crop and livestock monitoring
and e�cient farming practices. Information and Communication
Technology (ICT) will play a critical role in these advances by pro-
viding integrated and a�ordable cyber-physical systems (CPS) that
can longitudinally measure, analyze and control AG operations. In
this paper we make headway towards the design and integration of
such AG-CPS. We begin by characterizing the information and com-
munication technology demand of smallholder agriculture based
on tra�c analysis of farm Internet use. Our �ndings inform the
design and integration of an end-to-end AG-CPS called FarmNET
that provides (i) robust control mechanisms for multi-sensor AG
data collection and fusion, (ii) wide-area, heterogeneous wireless
networks for ubiquitous farm connectivity, (iii) algorithms and mod-
els for farm data analytics that produce actionable information from
the collected agricultural data, and (iv) control mechanisms for
autonomous, proactive farming.
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1 INTRODUCTION
Smallholder farms rely predominantly on single-family labor. Such
farms form the backbone of agricultural (AG) production and are
essential to eradicate hunger in the face of a changing climate,
while preserving our natural resources [60]. Recent estimates indi-
cate that 80% of the food produced in the developing world comes
from smallholder farms [78]. �is number is far exceeded in the
U.S., where USDA estimates that 97.6% of farms are smallholder
enterprises and they are responsible for 85% of the nation’s AG
production [88]. With the world’s booming population, the United
Nations foundation estimates that the farm production needs to
double by the year 2050 for society to be able to eradicate hunger
and secure nutrition [52]. �is creates an appealing market op-
portunity for smallholder farms to proliferate while solving one
of humanity’s big challenges. Such growth mandates improved
e�ciency in current farm practices related to (i) task management
and coordination, (ii) crop and livestock monitoring, data analytics
and control, (iii) expansion of local markets and (iv) access and
adoption of new farming practices [66].

Information and communication technology (ICT) will play a crit-
ical role in such advances, however, current technologies [9, 14, 17–
19] are highly-specialized (e.g. focusing on soybean production),
provide closed solutions in that farmers have no control over their
data and corresponding analytics, and most importantly, are not
a�ordable for smallholder enterprises. �us, practical progress in
ICT for smallholder agriculture hinges on the availability of tech-
nology that either does not exist or needs to be re-purposed from
its predominantly urban context to �t the unique spatial, temporal
and environmental characteristics of smallholder farming. Such
technology includes (i) robust sensing infrastructures to measure
farm state and operations, (ii) ubiquitous wireless network connec-
tivity to transmit sensor and farmer data, (iii) domain-speci�c data
models and analytics to extract actionable knowledge from the
data, and (iv) adaptive control algorithms for e�cient sensing and
proactive control of farm processes towards autonomous farming.
Beyond availability, it is critical for these technologies to be seam-
lessly integrated into an AG cyber-physical system (AG-CPS)
that interacts with farmers, farm assets and processes to e�ciently
measure, analyze and control them, and inform decision-making,
improved farming practices, distribution chains and consumer rela-
tions. To this end, there is a need of fundamental research and
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engineering of novel and integrated end-to-end mechanisms
for farm sensing, network connectivity, data analytics and
control.

Related research and technology integration can be subdivided
into (i) wireless networks for under-served areas [37, 69, 72, 74, 75,
91, 107, 110, 116, 117, 121, 134, 135], (ii) data mining for AG applica-
tions [34, 48, 51, 59, 61, 64, 70, 80, 89, 90, 92, 101, 102, 104, 119, 122,
132, 137, 144] and (iii) estimation and control for decision making
in uncertain environments under constraints [146–156]. Key limi-
tations of existing solutions are that they are either developed for
non-AG contexts or tackle connectivity, data analytics and control
in isolation. To bring meaningful ICT innovation in agriculture, we
need to adopt an integrated approach.

Our work informs such an integrated approach via systematic
analysis of farm Internet use and ICT needs. Our analysis is based
on a year-long and continuing collaboration with Essex Farm in
upstate New York that has allowed us to learn �rst-hand about the
ICT needs of farm operations. With farmers’ permission, we have
also been able to collect traces of farmer mobility and Internet use.
Our analysis of these traces shows that farm tra�c is a unique mix
of farmer and IoT sensor activity with interlocking characteristics.
In terms of volume and direction, the IoT sensor tra�c is upload-
intensive, while farmer tra�c is download-intensive. While farmer
tra�c is bursty and unpredictable, that of IoT sensors is primar-
ily periodic and, thus predictable. Finally, while farmer tra�c is
spatially-concentrated, IoT sensor tra�c is distributed across the
farm’s territory.

�ese insights create a unique design space for (i) ubiquitous
AG wireless network architecture and protocols, (ii) novel AG data
analytics and (iii) AG control. We integrate these key components
and present our vision of an end-to-end AG-CPS called FarmNET.
FarmNET integrates four key components to collect longitudinal
data, and utilize real-time data analytics, domain-speci�c models
and control algorithms to enable increased quality and productivity
of farm operations, with minimal footprint.

(1) Sensing frontend. Each FarmNET sensor will be wirelessly
connected and highly-recon�gurable. �e wireless capability of
sensors will allow for seamless farm data o�oad, whereas the recon-
�gurability will enable adaptive sampling to e�ciently manage the
tradeo�s between volume and periodicity of farm measurements
versus accuracy of data analytics and control algorithms.

(2) Communication network. To accommodate the unique farm
tra�c, we envision a heterogeneous wireless network that is com-
prised of a plug-and-play wireless backhaul realized over TV white
spaces, and a three-modal last mile implemented over LTE or Wi-Fi.
�is architecture design poses fundamental challenges in (i) joint
cross-layer optimization of last-mile and backhaul access that is
informed by the properties of the heterogeneous farm tra�c, and
(ii) characterization, modeling and integration of power e�ciency
of AG-CPS.

(3) Data analytics. A key challenge in FarmNET is to enable robust
knowledge discovery from noisy and sparse sensor measurements
and to employ them for analytic tasks such as anomaly detection,
root cause analysis, historical trend detection and prediction based
on statistical data-driven models and simulation. �is problem lends
itself for a graph-theoretical formulation with nodes representing

farm entities (pastures, animals, arable �elds, etc.), connections
modeling interactions among entities, and multi-variate graph sig-
nals modeling temporal entity states (e.g. soil moisture, animal
health and milk production). �is dynamic heterogeneous graph
framework will enable a holistic understanding of all sensed farm
operations and enable modeling and control-enabled optimization
of the global farm health.

(4) Control. To enable high–output and e�cient, controlled–
environment AG technologies and systems, we envision a holistic
controlled sensing framework that will integrate IoT–sensing ca-
pabilities with agriculture data collection, network structure and
humans in the loop, to enable real–time accurate agricultural moni-
toring and control. To this end, we propose (i) a stochastic dynamic
system model that fully describes the farm’s state (i.e., health and
footprint) over time, while incorporating the e�ect of both cyber
(e.g., control signals) and physical components (e.g., agricultural
variables), (ii) recursive, structured farm state estimators, and (iii)
strategies that control sensing and farm processes by optimizing
farm state estimation accuracy and di�erent operation costs (e.g.,
sensing, farm processes).

In what follows, we �rst describe the current state of AG ICTs
(§2). Next, we provide analysis of farm ICT needs that is based
on empirical evaluation of farm Internet access (§3). Our analysis
informs the design of an end-to-end AG-CPS dubbed FarmNET that
is presented in §4. Finally, we conclude our paper in §5.

2 LIMITS AND OPPORTUNITIES
In this section, we �rst describe the current state of ICTs for agri-
culture and detail their limitations. We survey existing solutions
that can be harnessed to address these limitations. We also discuss
several technological needs that cannot be met by re-purposing of
existing technologies and require fundamentally new design.

2.1 Current State of AG ICTs
Multiple solutions that target precision agriculture and AG decision
support exist both in industry and academia.

2.1.1 Industrial products. Industrial products can be largely sub-
divided in such that target (i) sensing [1, 2, 5, 7, 14], (ii) data analyt-
ics [4, 8, 10–13, 15–17, 17, 21] and (iii) consumer relations [3]. A large
fraction of the sensing solutions perform single-modality sensing,
i.e., only imagery [2, 5], moisture [7] or nitrates [1]. g�rive [14]
is the only one that supports multi-modal sensing, and basic data
fusion and analytics. �e industry has largely focused on AG data
analytics with a large number of start-ups [4, 8, 10–13, 15, 17, 21]
and well-established AG corporations [16, 17] entering this busi-
ness. All of these are closed-form, cloud-based solutions that do not
allow �exibility in data management and do not provide farmers
access to their own data. �is, as found in recent research [82],
has raised concerns around data privacy, security and control. A
common limitation found by smallholder farmers with regards to
existing industrial products is that they are prohibitively-expensive,
and thus, not economically-feasible for smallholder farm opera-
tions. In addition, such systems are typically not open and thus do
not provide opportunities for modular customizations for di�erent
smallholder farm operations.
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Summary of limitations. Industrial products have several
key limitations, related to cost, and �exibility of access and data
management. Furthermore, none of the existing industrial products
provide a wide-pro�le, end-to-end solution; instead, they focus
either on sensing or data analytics and typically take network
connectivity for granted. While decision support is the focus of
some existing products, current e�orts in control mechanisms for
autonomous farming are limited, highly-specialized and out of
�nancial reach of smallholder farms.

2.1.2 Academic research. Related research and technology in-
tegration can be subdivided into (i) wireless networks for under-
served areas [37, 69, 72, 74, 75, 91, 107, 110, 116, 117, 121, 134, 135],
(ii) data mining for AG applications [34, 48, 51, 59, 61, 64, 70, 80,
89, 90, 92, 101, 102, 104, 119, 122, 132, 137, 144] and (iii) estima-
tion and control for decision making in uncertain environments
under constraints [146–156]. Key limitations of existing solutions
are that they are either developed out of the AG context or tackle
connectivity, data analytics and control in isolation.

Recent technological advances in precision agriculture hinge
on the availability of wireless network connectivity, however,
all of them take connectivity for granted (e.g. products described
in §2.1.1). At the same time, smallholder farmlands, with their
extremely-low population density, o�en provide the least-appealing
business case for commercial network deployments. As a result,
farmlands are characterized with spo�y, inconsistent, intermi�ent
or all together lacking network coverage. Advances in wireless net-
works for under-served areas [37, 69, 72, 74, 75, 91, 107, 110, 116, 117,
121, 134, 135] bring promise for improved farm connectivity. Un-
fortunately, existing solutions are designed exclusively for human-
generated tra�c and are not readily applicable for farm connectivity
that needs to accommodate a mix of human and IoT sensors tra�c
with varying delay constraints (detailed description and preliminary
results in § 3). A large volume of prior work focuses on wireless
sensor network connectivity (WSN) [22–25, 29, 31, 56, 62, 142] with
some specializing in WSN for agriculture [33, 58, 111, 139–141]. A
key limitation of these works is that they only accommodate sen-
sor data and will not scale well for an integrated AG-CPS such as
FarmNET, that is optimized to handle heterogeneous farmer-sensor
tra�c.

In AG data analytics, data mining and machine learning tech-
niques have been applied to extract high-level knowledge of the
farm state [119]. Of central interest are crop [122, 137] and ani-
mal health [48, 51, 59], soil properties [35, 100], animal tracking
and behavior inference [59, 70, 80, 90, 102, 104, 122, 132, 137, 144].
�ese techniques are designed for o�ine processing of previously-
collected data, however, they are not suitable for real-time tracking
of multiple interacting entities (e.g. animals, pastures, feed and
weather) as an evolving network. Tracking of such multi-entity,
longitudinal interactions requires a dynamic-network-mining ap-
proach and is critical to enable anomaly detection, root-cause
analysis and realistic simulation for ”what-if” analysis. Dy-
namic network mining is an emerging research �eld that has pro-
duced scalable methods for anomalous temporal subnetwork de-
tection [44, 98, 99, 130], prediction of the network’s global state
based on local properties [54, 55], information and disease prop-
agation [42, 43] applied to transportation, biological and social

networks. Such methods, however, are not readily-adoptable in the
AG context, as AG processes incur di�erent interaction dynamics.
For example, the temporal interaction between grazing herd ani-
mals and pasture paddocks requires novel de�nitions of anomalies
and novel predictive models for pasture productivity in the pres-
ence of grazing animals, varying weather and nutrients within the
spatial network of paddocks.

Prior work on monitoring and control for precision agricul-
ture and farm monitoring such as [28, 30, 36, 39, 40, 45, 46, 53, 58,
67, 81, 103, 143] has considered either ad–hoc or static optimization
approaches. However, real–time and cost–e�cient monitoring and
control requires rigorous dynamic farm system modeling, which
jointly considers the cyber and physical components and precisely
de�nes their interactions, optimization and control system theories.
Similar approaches have been successfully applied to other applica-
tions (e.g., environmental monitoring [20, 49, 94–97, 115, 127–129],
target tracking [32, 47, 50, 65, 71, 73, 83, 86, 106, 124, 125], physi-
cal activity tracking [145, 147, 149, 152]), however, the proposed
solutions are not readily applicable in the AG context, since AG-
CPS (i) require more complex dynamic models, (ii) require func-
tions that control both sensing and farm processes, and (iii) exploit
the unique AG system characteristics (e.g., humans–in–the–loop,
network–induced constraints, model structure).

Summary of limitations. While the academic community has
made a substantial headway towards data-driven agriculture, no
work focuses on providing an end-to-end solution to enable sustain-
able, proactive and autonomous agriculture. Furthermore, a key
limitation of existing data-driven approaches is that they focus on
single-time, o�ine analytics and are thus not suited for longitudinal,
real-time and actionable analysis of AG data. Similarly, AG control
has considered static optimization or ad hoc approaches, however,
further development is necessary to enable real-time, dynamic con-
trol. Finally, in terms of wireless networks, existing solutions focus
on accommodating human-generated tra�c and will not scale well
for the heterogeneous demand on farm networks.

2.2 Limits and Opportunities Speci�c to
Smallholder Farming

Varying seasonal workforce; limited connectivity in remote rural lo-
cations; lack of accessible systems for quality control, planning and
operational analytics; and maintaining close working relationships
with (possibly multiple) end-customers are among the main chal-
lenges for smallholder family-operated farms. �us, automation of
the common monitoring tasks via low-cost sensing and connectiv-
ity solutions, data-driven planning and control as well as o�ering
measurable sustainability/quality statistics for end customers open
tangible opportunities for improving smallholder farming enter-
prises of varying scales. �ese challenges transcend to developing
world smallholder farms, although the tradeo�s between cost and
system utility in these scenarios need to be further considered.

In order to embrace the above opportunities, emerging AG-CPS
need to employ longitudinal data, and utilize real-time data ana-
lytics, domain-speci�c models and control algorithms to enable
increased quality and productivity with minimal footprint. �ese
challenges create an appealing research agenda for (i) robust multi-
sensor data collection and fusion, (ii) wide-area, heterogeneous wire-
less networks for ubiquitous farm connectivity, (iii) algorithms and
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models for farm data analytics that produce actionable information
from raw sensor data, and (iv) novel estimation and control mecha-
nisms for autonomous and proactive farming. �ese components will
need to be seamlessly-integrated in a holistic and modular AG-CPS.
In the design of such integrated AG-CPS, of central importance
should be the trade-o� between the economic feasibility of the
sensing and communication infrastructure and the accuracy and
e�ciency of data analytics, monitoring and control to promote
proactive farming practices. �is tradeo� can be tackled by devel-
oping and adopting algorithms, models, hardware and so�ware
that leverage open-source and highly-recon�gurable components.

3 ANALYSIS OF FARM ICT NEEDS
Our analysis of farm ICT needs is based on a measurement cam-
paign we executed in Essex Farm between July and December of
2016. In what follows we provide background on Essex Farm, our
methodology and objectives, results, and design implications.

3.1 Essex Farm
Essex Farm1 was established in 2004 by Mark and Kristin Kim-
ball and is a unique diverse-pro�le family-operated farm in Up-
state New York that spans an area of 1,100 acres. It operates as a
farm-to-door CSA (Community Supported Agriculture), but unlike
classical CSAs, it provides a full, all-you-can-eat diet, year-round
to its members. �e farm specializes in a diverse pro�le of agri-
cultural activities from vegetable and fruit production to grains,
eggs, dairy and wide spectrum of meats. Beyond production, the
farm also collaborates with a local enterprise called �e Hub on
the Hill2 to make preserves from the seasonal produce to maintain
its supplies year-round. �e farm employs anywhere between 5
and 20 additional farmers throughout the year. �ese farmers are
typically young professionals, who come from di�erent parts of
the U.S. and Europe and are looking to get training and hands-on
experience with farming. �us Essex Farm provides them with a
unique opportunity to (i) learn in a farm with a diverse activity
pro�le and (ii) interact with cu�ing-edge IT innovation that is un-
dergoing on the farm. Overall, the diverse activity pro�le of the
farm, its farm-to-door operation, its employment of young farming
professionals and its collaboration with other enterprises in AG
sustainability makes for a unique ecosystem to understand AG ICT
needs and opportunities.

3.2 Methodology
The farm Internet access is currently provided over a 5MBps mi-
crowave wireless terrestrial link that beams over lake Champlain
to connect the farm with their ISP in Vermont. �e gateway link
is then locally-distributed through three Wi-Fi access points con-
nected to the gateway via an Ethernet LAN. Besides the farm Wi-Fi,
there is also limited coverage provided by commercial mobile carri-
ers. The goals of our measurements were to (i) characterize the
commercial network availability and quality on the farm, and (ii)
understand the volume, direction and spatio-temporal character-
istics of farm tra�c demand. For the �rst task, we developed an
Android application to collect geo-tagged network performance
1h�p://www.essexfarmcsa.com/
2h�p://thehubonthehill.org/

information every 30 seconds and submit it to our server for stor-
age and analysis. Two phones running the app were carried by
di�erent farmers over the course of a week in high season (July).
For the second task, we collected longitudinal pcap traces at the
farm gateway. Once collected, we post-processed these pcap traces
using tstat3 in order to extract individual TCP and UDP �ows and
study the per-�ow performance and inter-arrival rate.

3.3 Analysis Results
The farm Internet demand is generated by a mix of sensors
and farmers. Farmers use applications that require real-time In-
ternet access, whereas sensors are a mix of real-time access and
delay-tolerant nodes. In the remainder of our analysis, we split
the collected traces into farmer-generated and sensor-generated,
and apply the same analysis methodology to the two trace subsets.
�is leads to unique insights into the characteristics of farm ICT
demand.

We begin our analysis by focusing on the traces collected by
our Android application. Using these traces, we study the spatial
characteristics of tra�c demand, and the network availability and
quality. We �nd that farmer tra�c is highly-localized, whereas
sensor tra�c is spatially-distributed. We also �nd that the current
Wi-Fi network and commercial cellular network are not able to
meet the o�ered demand. We then focus on pcap trace analysis. We
�nd that farmer and sensor tra�c have opposing characteristics
in terms of tra�c volume, direction and predictability. In what
follows, we detail our results.

3.3.1 Spatial distribution of supply and demand.
– Network availability. Figure 1 presents our results for RSSI
measurements of Wi-Fi and one of the major U.S. mobile carriers4.
Reliable Internet access is available only in the area around the
farm o�ce, house, shop and barn and is extremely poor (cellular)
or lacking (Wi-Fi) in the rest of the farm.
– Spatial tra�c characteristics. We split the farm territory (1,100
acres) into 10x10 meter squares and analyze the frequency of farmer
visits of each square. In the course of a week only 2.5% of all the
10x10 grid squares were visited by farmers. �is indicates high
spatial concentration of farmer tra�c demand, which means that
a majority of farmer Internet access can be accommodated with
several stationary always-on access points. Unlike farmers’ tra�c,
the IoT sensor tra�c is spatially-distributed across the farm due to
the need for ubiquitous farm measurements.

3.3.2 Tra�ic volume, direction and predictability.
– Temporal tra�c characteristics. We collected longitudinal
pcap traces that capture all the farm tra�c (IoT sensors and
farmers). We compare the �ow inter-arrival time (IAT) of farmer
and sensor tra�c. According to Figure 2, the farmer tra�c
arrives at a wide range of intervals (from 100ms to 100s) and is
unpredictable. At the same time, 70% of the IoT sensor tra�c
is characterized with an IAT of 50s, thus, IoT farm tra�c is
predictable.
– Volume and direction of tra�c. Lastly, we are interested in charac-
terizing the intensity of tra�c (volume) in the uplink and downlink
3h�p://tstat.tlc.polito.it/
4Interactive maps available at h�ps://goo.gl/yvEwZu

http://www.essexfarmcsa.com/
http://thehubonthehill.org/
http://tstat.tlc.polito.it/
https://goo.gl/yvEwZu
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Figure 1: Cellular (le�) and Wi-Fi (right) coverage on Essex Farm. No cellular access was detected in roughly 20% of the measurements. Even when available,
the cellular network signal strength rarely exceeded -100dBm, which does not su�ce for meaningful Internet access. Wi-Fi access is available only in the o�ce
area and is lacking anywhere else on the farm.
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Figure 2: Flow inter-arrival time (IAT) of sensor (le�) and farmer tra�c (right).
IoT sensor tra�c is predictable with 70% of �ows having IAT of 50s. Farmer
tra�c’s IAT varies between 100ms and 100s and is not predictable.
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Figure 3: Volume and direction of sensor (le�) and farmer (right) tra�c. Sen-
sor tra�c is predominantly in uplink direction, averaging 100KB in size per �ow.
Farmer tra�c is downlink-intensive with up to 500KB-sized �ows.

Farmer tra�c IoT-Sensor tra�c
Spatial Highly-localized Distributed

Timeliness Real-time Real-time+delay-tolerant
Periodicity Bursty, unpredictable Mostly predictable
Volume Bandwidth-intensive Not bandwidth-intensive
Direction Downlink Uplink

Table 1: Summary of �ndings and design outlook.

direction. For this analysis, we again use pcap traces. Figure 3
presents our results for IoT sensors (le�) and farmer tra�c (right)
demonsrtating that the sensor tra�c is uplink-intensive, while the
farmer tra�c is downlink-intensive.

3.4 Design Implications
Our analysis, summarized in Table 1, shows that IoT sensor and
farmers tra�c have opposing characteristics across all evaluation
criteria. �is creates a unique design space for novel (i) AG wireless
network architecture and protocols, (ii) AG data analytics and (iii)
AG monitoring and control.
– Implications on wireless networking. �e joint spatial and timeli-
ness characteristics of farm tra�c have direct implications on net-
work architecture design, as they permit successful accommodation
of majority of the farm tra�c, without having to deploy a dense,
always-on wireless network throughout the entire farm. Instead,
we envision a plug-and-play wireless backhaul that maintains a
number of always-on stationary hot-spots and allows opportunistic
access for the swath of delay-tolerant sensor tra�c. Our �ndings on
tra�c types, periodicity, volume and direction call for a cross-layer
protocol design, that targets rapid transfer of heterogeneous farm

tra�c and is informed by the volume, direction and predictability
of this tra�c.
– Implications on data management and mining. �e necessity to
support farmer and sensor tra�c will raise an important trade-o�
question for data analytics and mining using IoT sensor readings:
What is the minimum temporal resolution for di�erent sensing
modalities that ensure high quality (e.g., correctly identi�ed anom-
alies, accurate animal tracking, etc.), while minimizing the rate
of sensor readings and thus, not overloading the backhaul with
unnecessary sensor data? In addition, real time analytics will have
to incorporate delay tolerance and possibly missing values, while
still providing maximally useful results to the end users.
– Implications on monitoring and control. �e statistical character-
istics of IoT–sensor–generated tra�c and the structure of the pro-
posed network architecture suggests that measurement and control
signal information will be communicated probabilistically. As a
result, the dynamic farm state model will need to incorporate the
speci�c network–induced constraints, while the monitoring and
control processes models will need to account for the delayed arrival
(or missing) of measurement and control signals. Real–time, cost–
e�cient controlled–environment agriculture requires the design
of appropriate estimation and control strategies for under-served
areas to ensure the unobstructed operation of the AG-CPS system.

4 FARMNET
FarmNET, as illustrated in Figure 4, is an integrated architecture
for real-time agricultural data collection, analytics and farm control.
�e farm ecosystem consists of farmers, IoT sensors and farm oper-
ations pending optimization. FarmNET integrates sensing and com-
munication with data analytics and control to facilitate longitudinal
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Figure 4: FarmNET architecture.

data collection, and analysis to produce actionable information and
enable proactive farming. In what follows, we detail our vision of
the desing of each of FarmNET’s three key components and discuss
their integration into an end-to-end AG-CPS.

4.1 Sensing and Communications
Background and motivation. Connectivity for IoT sensors and
farmers is central to an AG-CPS, however, sparsely populated small-
holder farmlands are not economically appealing for commercial
network deployments, and thus commercial coverage is spo�y, in-
consistent or lacking altogether. We identify several unique charac-
teristics of smallholder farmlands that lead to such poor commercial
connectivity. First of all, smallholder farmlands are characterized
with extremely-low population density. An average smallholder farm
spans a large territory: between 87 and 148 acres [87], rendering
its population density orders of magnitude smaller than classical
rural scenarios. Our preliminary results (§3) also demonstrate that
network demand of smallholder farms is a unique mixture of high-
volume, spatially-localized and bursty human-generated tra�c and
low-volume, spatially distributed and predictable IoT sensor tra�c.
High-volume (and high-revenue) demand that comes from farmers’
Internet access is o�en spatially-localized, however, low-volume
demand of IoT sensors is spatially-distributed across the large farm-
land. To accommodate such demand for low population density
over large territory, typical commercial cellular providers face low
return of investments and thus have low economic incentives.
FarmNET network architecture. To accommodate the hetero-
geneous farm demand, we envision a hybrid, multi-modal last mile
access and a plug-and-play wireless backhaul network architecture,
illustrated in the Communications pane of Figure 4. �e hybrid
last mile features three operation modalities (i) stationary, always

on hot-spots, (ii) bring-your-own (BYO) opportunistic hot-spots
and (iii) drone-mounted hot spots for target dispatch. To enable
resource sharing, extensibility and open design, farmers’ devices
and IoT sensors will be Wi-Fi capable. To provide on-demand In-
ternet access anywhere on the farm, we envision that last mile
modalities will connect to a plug-and-play, wide-area backhaul net-
work. Such plug-and-play network can be supplied over TV White
Spaces (TVWS) in order to bridge the farm tra�c to the Internet and
the on-farm cloud without requiring the establishment of on-farm
LANs or mesh networks, each of which incurs high deployment
and operational cost. To connect to the TVWS network, each last
mile modality will need to be equipped with a TVWS client device
(TVWS CPE). For the stationary and BYO last mile solutions, the
CPE can be collocated with the access point, however, the target dis-
patch modality would require a delay-tolerant connection, since a
TVWS CPE would exceed the drone’s load constraints. FarmNET’s
target dispatch last-mile will be scheduled by control mechanisms
(§4.3) to o�oad sensor data from areas without always-on coverage.

4.1.1 Research challenges. �e architecture and operations of
our sensing and communications need to be informed by the unique
nature of farm tra�c demand. �e system design objective should
be minimization of the tra�c distribution time from the network
users (i.e. sensors and farmers) to the network gateway, with simul-
taneous optimization of the power e�ciency of key architecture
components. �ese objectives pose fundamental research chal-
lenges in cross-layer protocol design, joint last-mile and wireless
backhaul optimization and energy-e�cient communications.

Cross-layer protocol design. Four major factors a�ect the
tra�c distribution time in our architecture: (i) medium access con-
trol in the Wi-Fi last mile, (ii) queueing at the Wi-Fi access point
(Wi-Fi AP) and the TVWS client, (iii) medium access control in the
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TVWS wireless backhaul, and (iv) transmission of redundant sensor
data. �us, we need to speed up the last-mile medium access, allow
adaptive queueing and processing of heterogeneous tra�c at the
last-mile access points, and provide adaptive tra�c scheduling over
the plug-and-play TVWS backhaul.

Adaptive scheduling of last-mile tra�c. E�ciently transmit-
ted multi-user data from the last mile need to be further propagated
over the TVWS CPE to the TVWS link and then to the local net-
work gateway. Additional delay components we need to manage
in this step are due to (i) data queueing and (ii) scheduling of trans-
missions over the TVWS link. Current TVWS network standards
assume a point-to-multi-point (P2MP) architecture and include
IEEE 802.11af [63] and IEEE 802.22 [133]. �e former uses Wi-Fi-
like contention-based schemes for random medium access control,
limiting the e�ective range of this standard [108]. In the context of
TVWS it has been demonstrated for ranges up to 1km [85]. IEEE
802.22 uses a TDD-based channel partitioning that achieves up to
100km communication range [85]. Our AG-CPS context calls for
wide-area communication networks, and thus, AG-CPS wireless
backhauls should be 802.22-centric.

Traditionally, packet scheduling in TDD networks takes a reac-
tive approach: as queues �ll up, the clients request uplink resources
in order to transmit back-logged data. �is approach incurs delays
as tra�c is queued waiting for the TDD link to cycle through its
frame structure. Our prior observations of sensor data volume,
direction and predictability, open space for design of proactive and
adaptive resource allocation schemes that schedule uplink slots for
sensor tra�c at the time of tra�c arrival. As a result, the TVWS
backhaul will provide P2MP communications, while e�ciently ac-
commodating sensor tra�c �uctuations and scaling back its re-
sources to handle farmer tra�c.

Power-e�cient sensing and communication. Along with
commercial network connectivity, power is the next most scarce
resource on farmlands. While electricity may be available in some
key locations on a farm, such as the farmhouse, o�ce and barns,
it is largely unavailable on the remainder of the farmland. �is
mandates that AG-CPS designs should optimize power consump-
tion and provide uniform services despite non-uniform availability
of power across the farmland. �e unique integrated design of
FarmNET posits novel research questions that will further our un-
derstanding of AG power consumption, and enable power-e�cient
design of AG-CPS. Power e�ciency of communication systems has
been studied in multiple domains from cellular network infrastruc-
tures [38, 74, 76, 93, 109] to end user devices [105, 112, 113, 118, 126].
Power e�ciency has also been considered for wireless sensor net-
works for agriculture [57, 68], however, existing approaches are
limited to the sensing infrastructure and do not consider the ef-
fects of system inter-dependencies of an integrated data-driven
and control-enabled design. An overarching approach to power
e�ciency would rely on adaptive duty-cycling through the ON and
OFF state of communicating devices, informed by communication
demand and the inherent power consumption of the underlying
hardware. To this end, two urgent questions emerge: WHEN to turn
power “o�” and “on” and HOW to do it. To answer these questions
we need to (i) characterize the power needs of individual compo-
nents both in isolation and jointly,and (ii) integrate components in
an energy-aware manner.

4.2 Data Management, Mining and Analytics
Extracting actionable information from farm operations sensed
data is key to enabling real-time control and decision making for
AG-CPS [101]. FarmNET will sense a variety of data (e.g., animal
location and behavior, farming machines and farmers’ location
and activity, soil state, crops and pasture growth, environmental
conditions) and output, e.g., dairy, meat, grains, vegetables, etc.
�ese diverse modalities open novel data management challenges
for data acquired by noisy measurements at heterogeneous tem-
poral scales. Moreover, it should enable analytics capabilities in
a scalable manner, enabling prioritization according to the delay
tolerance of speci�c farm operations. Another challenge is, that
FarmNET will have to assist farmers in answering “what-if” ques-
tions by employing simple and accurate data-driven models that
are incrementally re-trained based on new evidence. �e novel
aspects of our envisioned FarmNET system data analytics include
(i) knowledge extraction that handles sensor uncertainty and sparse
and economical sensor deployments suitable for smallholder farms
(ii) support for anomaly detection, root-cause analysis and simu-
lation using dynamic network models and (iii) a �exible middle
layer between sensing and control that relies on high-level states as
opposed to raw sensor readings, thus completing the architecture
of an end-to-end CPS.

To manage the tracking data stream and provide analytics in a
centralized on-the-farm data cloud, we will adopt Apache Spark [6].
It supports various data sources (SQL, streams, etc.) and fast writes
for IoT sensors’ streams, and works well with various analytics
platforms (MLIB, GarphX). Beyond sensor data, we will import
other data sources, such as real-time weather information and fore-
casts, operational data and manually collected ground truth data.
�e data repository will support (i) analytics tasks such as tempo-
ral trends, year-to-year comparison, anomaly detection and root
cause analysis; (ii) simulation and prediction of the farm operations;
and (iii) necessary data for the control component of FarmNET to
enable optimized communications, sensing and operational out-
comes.
Tracking uncertain mobile objects and their activity. Track-
ing and localization of moving objects using WSNs in various envi-
ronments have seen tremendous advances, with a variety of sensors,
data collection and algorithms proposed [26, 84]. In the agricul-
tural context, such objects include animals, farmers and farming
machinery. Successful and a�ordable tracking of the above will
enable e�ective labor distribution and identi�cation of bo�lenecks,
precision rotational grazing [80] and sick animal detection and
improved farm �eet management. �e case of tracking livestock
presents its own challenges: large areas to cover and large num-
ber of individuals [77, 103]. �ere are, however, regularities in the
herd behavior, e.g., shared preference for speci�c grass species and
tendency to stay together [138], that allow for the cost-e�ective
heterogeneous sensing WSN architecture of FarmNET. In partic-
ular, the majority of the herd members (passive) will be equipped
with low-energy bluetooth beacons (BLE), whose presence can be
sensed by a small sub-sample of active herd members equipped
with Bluetooth transponders, GPS, and radio to o�oad sensed data
to available sinks.
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Beyond position, we need to also track the activity of mobile ob-
jects. Activity classi�cation of farm animal behavior (standing, graz-
ing, laying, (in)active, etc.) has been considered using accelerom-
eters [59, 70, 89, 90, 132, 144], GPS sensors and signal strength to
a gateway within a wireless sensor network [102, 104]. In particu-
lar, methods for classifying feeding behavior have achieved high
accuracy: precision and sensitivity exceeding 80% for 5-10 minute
windows [59]. Beyond instantaneous classi�cation, FarmNET will
incorporate predictions of the best performing techniques in a tem-
poral smoothing framework for continuous behavioral smoothness
and thus limit the e�ect of instantaneous mis-classi�cation.
Tracking the state of crops and pastures. Crops, pasture grass
species and their growth state comprise another important potential
domain for precision farming [138]. FarmNET will predominantly
rely on a�ordable UAV-image sensing as opposed to high-density in-
dividual plant sensors. Beyond arable land crop monitoring, which
has received the highest a�ention from both industry and AG ICT
research, FarmNET will support precision rotational grazing that
requires quantifying the temporal interactions among the pasture
biomass, grazing animals, water, nutrients and the e�ect of weather
conditions [80]. Exact estimation of biomass and nutrients over
time typically involves labor-intensive sampling and expensive lab-
oratory testing [80]. Low-cost sensors have been predominantly ap-
plied to arable land [122, 137] and only recently employed for grass-
land [120]. Although less precise, the utility of sensing approaches
involving images [34, 64, 92] laser [114] and ultrasonic [123] sen-
sors have recently been studied for pasture measurement. Kabir
et al. [79] compared the precision for grass growth estimation of
ultrasonic, CCD and re�ectance sensors mounted on a tractor and
concluded that a camera sensor at 90 degrees angle had a domi-
nating performance. Although capable of ensuring a good quality,
continuous monitoring using tractor-mounted sensors is costly and
infeasible for the temporal resolution (at least once a day) we are
envisioning. Instead, FarmNET will utilize a combination of image
sensors mounted on an UAV and the sensed behavior of the grazing
animals, farmer activity and farming machine-mounted sensors to
track the crops and pasture growth over time. Research challenges
include: scheduling �ight plans (altitude and spatially adaptive)
to ensure a matching tracking quality to that of on-the-ground
tractor-mounted sensors.
Anomaly detection and root-cause analysis. We will cast our
tracking data as a dynamic graph of entities (e.g., �elds, crops, an-
imal herds, farmers, machines) with associated multivariate time
series as their state over time, and edges corresponding to depen-
dencies. Example entity signals will include: grazing over time,
occupancy of animals over time, water due to precipitation and
grass level over time. We will support various dynamic network an-
alytics task building on our previous work on global network state
classi�cation [54, 55], detection of outlier regions in a single time
snapshot [41, 130] and in time periods [44, 98, 99]. �e multivariate
nature of graph signals comprise the novel research challenges in
this task. Unlike existing methods de�ning anomalies as simple
additive score functions [44, 98, 99], we will consider dependencies
among signals, leading to novel graph optimization formulations
and corresponding algorithms. FarmNET will also support histor-
ical trend queries over subgraph regions of interest, de-trending
from seasonal weather pa�erns and detection of unhealthy animals.

Anomaly detection in our dynamic graph se�ing [44, 98, 99]
will direct a�ention to management zones that behave di�erently
from the rest of the network (e.g., overgrazing, regions with soil
erosion). Beyond the identi�cation of such zones in time, we will
also be able to perform root-cause analysis by examining anomalies
preceding the anomalous outcome, e.g., was the weather abnor-
mal, were animals le� grazing longer than prescribed, or were they
concentrated in only one location which got overgrazed? Once a
suspected cause is at hand, farmers will be able to take the corre-
sponding interventions to alleviate the situation, e.g. add fertilizer,
decrease the grazing period in the enclosing paddock and others,
schedule tillage or weed removal.
Supporting “What-if” questions via simulations. Detailed dy-
namic models for the interaction between animal herds, pastures
and e�ects of nutrient cycles and climate have been proposed re-
cently [131, 136]. Such models are characterized by dozens of pa-
rameters and typically make assumptions about the homogeneity
of grazing behavior and grass and legume growth. Calibrating all
parameters for a speci�c farm operation is not a trivial task. We
will employ an alternative data-driven modeling based on high-
resolution (both temporal and spatial) tracking data for grazing,
crops and pasture growth, weather conditions and nutrient supply.
We will model each �eld node as a queue [27] in which organic
ma�er (grass, vegetables, legumes, etc.) arrive in the queue at a
rate dependent on its current state (e.g., grass length), weather
conditions and fertilizers. We will learn this independent growth
rate using simple linear regression models from past observations.
�e herd’s grazing or crop harvesting within the same node act as
a server for the queue and the rate of those processing (i.e. consum-
ing the queue) can also be regressed based on tracking observations.
Equipped with (i) the rate functions of growth and (ii) consumption
we can simulate the dynamic system under di�erent con�gurations.
For example, we can answer question such as: What will be the state
of a pasture if we doubled the herd; or shorten the grazing interval
in the rotational schedule; or if we recon�gure the paddocks? What
will happen to a speci�c crop if there is a consecutive draught period
of 20 days? Being able to simulate realistically such scenarios can
enable be�er decisions as the model will be con�gured based on
observations from the speci�c farm. In addition, our models can
only get more accurate if we incorporate more sensing modalities
and increase sensor density.

4.3 Real–Time Farm Monitoring and Control
Knowledge of the state of pastures and crop �elds in agriculture
is crucial for farmers. As weather pa�erns change, crops mature,
and ca�le graze pastures, farmers rely on a combination of experi-
ence, visual observation, and intuition as to when to irrigate, apply
fertilizer, or move ca�le to another pasture. �eir decisions are
far from optimal. To enable high–output and e�cient controlled–
environment agriculture technologies and systems, we need a
novel, holistic controlled sensing framework that will integrate
IoT–sensing capabilities with agriculture data collection, network
structure and humans in the loop, to enable real–time accurate mon-
itoring and control. �is objective requires (i) a stochastic dynamic
system model that completely describes the farm’s state (i.e., health
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and footprint) over time, while incorporating the e�ect of both cy-
ber (e.g., control signals) and physical components (e.g., agricultural
variables), (ii) recursive structured state estimators, and (iii) control
strategies that optimize estimation accuracy and costs. Prior work
on control for precision agriculture and farm monitoring systems
has separately considered the cyber and physical components and
proposed ad–hoc [28, 30, 36, 39, 40, 45, 46, 53, 58, 81, 103, 143] or
static optimization approaches [67]. An integrated approach will,
instead, be based on rigorous stochastic dynamic farm system
modeling, optimization and control system theories.

Model and Estimators. CPS-assisted farm management relies
on realistic modeling of its constituent components and the avail-
ability of accurate farm state estimates. We propose to model the
health and footprint evolution of a farm as a discrete–time sto-
chastic dynamical system. We will de�ne the farm health as the
collective set of a variety of variables (e.g., soil moisture, bright-
ness temperature, vegetation biomass, soil chemical composition,
climate, production per unit of harvested area, product feed value)
that characterize the production ability of the farm and the quality
of its products. In contrast, we will de�ne the farm footprint as a set
of variables quantifying the e�ect on the environment (e.g., carbon
dioxide, water consumption, demand for land to feed, soil nutrients
quality). Our model will exploit (i) the physics–based models of
farm variables’ evolution from the literature and §4.2, (ii) the struc-
tural and statistical properties of the IoT sensor models, and (ii)
the form of control mechanisms in various levels (i.e., adaptation
of sensor rates, dispatch of network infrastructure, humans in the
loop, farm processes) and the e�ect of network tra�c’s statistical
properties (§3) and network architecture (§4.1). Beyond modeling,
we will develop low-complexity recursive Bayesian estimators of
the farm state that account for the network architecture charac-
teristics and tra�c’s statistical properties, the model structure and
humans in the loop.

Joint Optimization of Sensing, Estimation, and Control.
FarmNET’s system design requires a controlled sensing framework
that considers all relevant information to maximize the farm’s
health, while minimizing its footprint in a dynamically changing
environment. Leveraging the dynamic farm model, the system
will automatically decide which sensor data to collect and network
infrastructure to dispatch to continuously estimate and monitor
the farm’s health and footprint. Simultaneously, it will automati-
cally control the di�erent farm processes (e.g., tillage scheduling
and con�guration, herd location scheduling, fertilizer use and opti-
mal lighting) to improve the farm’s state. Determining and imple-
menting the exact solution of the outlined optimization problem
is a computationally-expensive task. �us, we plan to design low-
complexity, near-optimal sensing, estimation and control strate-
gies that will exploit properties of the AG–CPS, optimal solution
properties and farmers’ domain knowledge and feedback to enable
real-time farm monitoring and control.

5 DISCUSSION AND CONCLUSION
Today, one of the critical problems that humanity is facing is how
to secure nutrition in the face of a changing climate?. To tackle this
problem, we need to increase agricultural production, while dramat-
ically reducing its environmental footprint. Smallholder farms that

form the backbone of agricultural production, are thus faced with
a tremendous opportunity to expand and proliferate, while solving
one of the world’s most pressing issues. �is opportunity, how-
ever, comes with a list of challenges related to understanding and
optimization of farm operations. Information and communication
technology will play a critical role in such understanding by design-
ing agricultural cyber-physical systems to measure, model, analyze,
evaluate and dynamically control the farm state and operations.

Multiple solutions from industry and academia a�empt to solve
this problem. Each of these two categories su�ers its own inherent
limitations. Industrial products are for-pro�t and o�en strive to pro-
vide closed-form solutions. Such solutions are highly-specialized
and are not compatible with each other. �is requires farmers to
purchase various non-extensible systems to provide full-pro�le AG
ICT support, which quickly becomes intractable and �nancially-
infeasible in the smallholder AG context. Academic solutions for
AG ICT are o�en data- or sensor-centric. While such solutions
make important progress towards modeling of AG processes, they
typically address AG-CPS components in isolation and are not well-
��ed for real-time, longitudinal analysis and farm simulations.

While our preliminary analysis and corresponding design is
US-centric, we believe that the proposed solution has far-reaching
implications on smallholder agriculture in the international context.
A key factor to investigating the applicability of the proposed solu-
tions to smallholder farms in the developing world is to follow a
modular design approach both (i) horizontally: independent end-to-
end infrastructure for various operations within a policulture farm
such as animals, vegetables, grain, etc.; and (ii) vertically by ensur-
ing interoperability of varying cost/quality sensing, connectivity
and analytics solutions. We see such a design central to further
understand the technological, farmer utility and cost challenges in
various farmer enterprises. �is tradeo� between cost and utility as
well as in-depth understanding of the speci�c needs of farmers in
rural areas of the developing world is of key importance when cus-
tomizing AG-CPS systems for those se�ings. Our modular design
and evaluation of the utility of individual modules in collaboration
with Essex Farm will shed light to the above questions of feasibility
to the developing world.

Our research makes important headway towards integrated, end-
to-end AG-CPS by providing in-depth analysis of farm ICT de-
mand. Our �ndings indicate that farm demand is a unique mixture
of farmer- and sensor-generated tra�c with interlocking charac-
teristics. In terms of spatial distribution, farmer tra�c is highly-
localized, whereas sensor tra�c is distributed. Furthermore, while
farmer tra�c is bursty, downlink-intensive and unpredictable, sen-
sor tra�c is periodic, uplink-intensive and predictable. �ese �nd-
ings create a unique design space for an integrated AG-CPS dubbed
FarmNET. FarmNET consists of three interdependent components
including (i) sensing and communication, (ii) AG data analytics and
(iii) AG monitoring and control. In this vision paper, we outlined
key functional blocks of each component, surveyed the state of the
art and outlined an agenda for future development.

An integrated system such as FarmNET is essential to enable
practical ICT innovation in agriculture. Such system requires an
interdisciplinary approach that brings expertise from sensing and
wireless networks, data science, and estimation and control with a
constant practitioner feedback in the loop.
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